Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR.
J Am Chem Soc. 2011 Jul 21;
Authors: Bayro MJ, Debelouchina GT, Eddy MT, Birkett NR, Macphee CE, Rosay MM, Maas WE, Dobson CM, Griffin RG
We describe magic-angle spinning NMR experiments designed to elucidate the interstrand architecture of amyloid fibrils. Three methods are introduced for this purpose, two being based on the analysis of long-range 13C-13C correlation spectra and a third based on the identification of intermolecular interactions in 13C-15N spectra. We show, in studies of fibrils formed by the 86-residue SH3 domain of PI3 kinase (PI3-SH3), that efficient 13C-13C correlation spectra display a resonance degeneracy that establishes a parallel, in-register alignment of the proteins in the amyloid fibrils. In addition, this degeneracy can be circumvented to yield direct intermolecular constraints. The 13C-13C experiments are corroborated by 15N-13C correlation spectra obtained from a mixed [15N,12C]/[14N,13C] sample which directly measure interstrand distances. Furthermore, we demonstrate a dramatic increase (from 23 to 52) in the number of intermolecular 15N-13C constraints available from this experiment when the spectra are recorded with signal enhancement provided by dynamic nuclear polarization (DNP) at 100 K. The increase in the information content of the spectra is due to the enhanced signal intensities and to the fact that dynamic processes, leading to spectral intensity losses, are quenched at low temperatures. In total the experiments provide 111 intermolecular 13C-13C and 15N-13C constraints that establish that the PI3-SH3 protein strands are aligned in a parallel in-register arrangement within the amyloid fibril.
PMID: 21774549 [PubMed - as supplied by publisher]
Intermolecular Structure Determination of Amyloid Fibrils with Magic-Angle Spinning and Dynamic Nuclear Polarization NMR
Intermolecular Structure Determination of Amyloid Fibrils with Magic-Angle Spinning and Dynamic Nuclear Polarization NMR
Marvin J. Bayro, Galia T. Debelouchina, Matthew T. Eddy, Neil R. Birkett, Catherine E. MacPhee, Melanie Rosay, Werner E. Maas, Christopher M. Dobson and Robert G. Griffin
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja203756x/aop/images/medium/ja-2011-03756x_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja203756x
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
[NMR paper] Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
Related Articles Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
J Am Chem Soc. 2005 Sep 21;127(37):12965-74
Authors: Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M
It is shown that molecular structure and dynamics of a uniformly labeled membrane protein can be studied under magic-angle-spinning conditions. For this purpose, dipolar recoupling experiments...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Probing membrane protein orientation and structure using fast magic-angle-spinning so
Probing membrane protein orientation and structure using fast magic-angle-spinning solid-state NMR.
Related Articles Probing membrane protein orientation and structure using fast magic-angle-spinning solid-state NMR.
J Biomol NMR. 2004 Nov;30(3):253-65
Authors: Andronesi OC, Pfeifer JR, Al-Momani L, Ozdirekcan S, Rijkers DT, Angerstein B, Luca S, Koert U, Killian JA, Baldus M
One and two-dimensional solid-state NMR experiments are discussed that permit probing local structure and overall molecular conformation of membrane-embedded polypeptides...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
[NMR paper] Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscop
Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy.
Related Articles Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy.
Nature. 2002 Nov 7;420(6911):98-102
Authors: Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H
The determination of a representative set of protein structures is a chief aim in structural genomics. Solid-state NMR may have a crucial role in structural investigations of those proteins that do not easily form crystals or are not...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] Evidence of secondary structure by high-resolution magic angle spinning NMR spectrosc
Evidence of secondary structure by high-resolution magic angle spinning NMR spectroscopy of a bioactive peptide bound to different solid supports.
Related Articles Evidence of secondary structure by high-resolution magic angle spinning NMR spectroscopy of a bioactive peptide bound to different solid supports.
J Am Chem Soc. 2001 May 9;123(18):4130-8
Authors: Furrer J, Piotto M, Bourdonneau M, Limal D, Guichard G, Elbayed K, Raya J, Briand JP, Bianco A
The structure of the 19-amino acid peptide epitope, corresponding to the 141-159 sequence of...
nmrlearner
Journal club
0
11-19-2010 08:32 PM
Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR
Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi100077x/aop/images/medium/bi-2010-00077x_0004.gif
Biochemistry
DOI: 10.1021/bi100077x
http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/bichaw/~4/jvIszRWKX60
More...
nmrlearner
Journal club
0
10-14-2010 04:59 AM
Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR.
Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR.
Biochemistry. 2010 Aug 9;
Authors: van der Wel PC, Lewandowski JR, Griffin RG
Various human diseases feature the formation of amyloid aggregates, but experimental characterization of these amyloid fibrils and their oligomeric precursors has remained challenging. Experimental...