The Y145Stop mutant of human prion protein, huPrP23-144, has been linked to PrP cerebral amyloid angiopathy, an inherited amyloid disease, and also serves as a valuable in vitro model for investigating the molecular basis of amyloid strains. Prior studies of huPrP23-144 amyloid by magic-angle spinning (MAS) solid-state NMR revealed a compact ?-rich amyloid core region near the C-terminus and an unstructured N-terminal domain. Here, with the focus on understanding the higher order architecture of huPrP23-144 fibrils, we probe the intermolecular alignment of ?-strands within the amyloid core using MAS NMR techniques and fibrils formed from equimolar mixtures of 15N-labeled protein and 13C-huPrP23-144 prepared with [1,3-13C] or [2-13C]glycerol. Numerous intermolecular correlations involving backbone atoms observed in 2D 15N-13C spectra unequivocally suggest an overall parallel in-register alignment of the ?-sheet core. Additional experiments that report on intermolecular 15N-13CO and 15N-13C? dipolar couplings yield an estimated strand spacing that is within ~10% of the ~4.7-4.8 Å distances typical for parallel ?-sheets.
PMID: 21827207 [PubMed - as supplied by publisher]
Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid ?-protein fibrils.
Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid ?-protein fibrils.
Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid ?-protein fibrils.
Bioorg Med Chem. 2011 Aug 27;
Authors: Masuda Y, Fukuchi M, Yatagawa T, Tada M, Takeda K, Irie K, Akagi KI, Monobe Y, Imazawa T, Takegoshi K
Abstract
Aggregation of 42-residue amyloid ?-protein (A?42) plays a pivotal role in the etiology of Alzheimer's disease (AD). Curcumin, the yellow pigment in the rhizome of turmeric, attracts...
nmrlearner
Journal club
0
09-20-2011 03:10 PM
Intermolecular Alignment in Y145Stop Human Prion Protein Amyloid Fibrils Probed by Solid-State NMR Spectroscopy
Intermolecular Alignment in Y145Stop Human Prion Protein Amyloid Fibrils Probed by Solid-State NMR Spectroscopy
Jonathan J. Helmus, Krystyna Surewicz, Marcin I. Apostol, Witold K. Surewicz and Christopher P. Jaroniec
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja206469q/aop/images/medium/ja-2011-06469q_0003.gif
Journal of the American Chemical Society
DOI: 10.1021/ja206469q
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/e9F1wuu5168
nmrlearner
Journal club
0
08-16-2011 03:17 AM
Intermolecular Structure Determination of Amyloid Fibrils with Magic-Angle Spinning and Dynamic Nuclear Polarization NMR
Intermolecular Structure Determination of Amyloid Fibrils with Magic-Angle Spinning and Dynamic Nuclear Polarization NMR
Marvin J. Bayro, Galia T. Debelouchina, Matthew T. Eddy, Neil R. Birkett, Catherine E. MacPhee, Melanie Rosay, Werner E. Maas, Christopher M. Dobson and Robert G. Griffin
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja203756x/aop/images/medium/ja-2011-03756x_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja203756x
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner
Journal club
0
08-13-2011 02:47 AM
Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR.
Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR.
Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR.
J Am Chem Soc. 2011 Jul 21;
Authors: Bayro MJ, Debelouchina GT, Eddy MT, Birkett NR, Macphee CE, Rosay MM, Maas WE, Dobson CM, Griffin RG
We describe magic-angle spinning NMR experiments designed to elucidate the interstrand architecture of amyloid fibrils. Three methods are introduced for this purpose, two...
nmrlearner
Journal club
0
07-23-2011 08:54 AM
Molecular-Level Examination of Cu2+ Binding Structure for Amyloid Fibrils of 40-Residue Alzheimer’s ? by Solid-State NMR Spectroscopy
Molecular-Level Examination of Cu2+ Binding Structure for Amyloid Fibrils of 40-Residue Alzheimer’s ? by Solid-State NMR Spectroscopy
Sudhakar Parthasarathy, Fei Long, Yifat Miller, Yiling Xiao, Dan McElheny, Kent Thurber, Buyong Ma, Ruth Nussinov and Yoshitaka Ishii
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja1072178/aop/images/medium/ja-2010-072178_0006.gif
Journal of the American Chemical Society
DOI: 10.1021/ja1072178
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA ...
nmrlearner
Journal club
0
02-22-2011 11:06 PM
Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy.
Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy.
Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy.
J Am Chem Soc. 2010 Oct 6;132(39):13765-75
Authors: Van Melckebeke H, Wasmer C, Lange A, Ab E, Loquet A, Böckmann A, Meier BH
We present a strategy to solve the high-resolution structure of amyloid fibrils by solid-state NMR and use it to determine the atomic-resolution structure of the prion domain of the fungal prion HET-s...
nmrlearner
Journal club
0
01-21-2011 12:00 PM
Probing water-accessibility in HET-s(218-289) amyloid fibrils by solid-state NMR.
Probing water-accessibility in HET-s(218-289) amyloid fibrils by solid-state NMR.
Probing water-accessibility in HET-s(218-289) amyloid fibrils by solid-state NMR.
J Mol Biol. 2010 Nov 18;
Authors: Van Melckebeke H, Schanda P, Gath J, Wasmer C, Verel R, Lange A, Meier BH, Böckmann A
Despite its importance in the context of conformational diseases, structural information is still sparse for protein fibrils. Hydrogen/deuterium exchange measurements of backbone amides allow to identify hydrogen-bonding patterns and reveal pertinent information about...
nmrlearner
Journal club
0
11-26-2010 05:32 PM
Accurate Determination of Interstrand Distances and Alignment in Amyloid Fibrils by M
Accurate Determination of Interstrand Distances and Alignment in Amyloid Fibrils by Magic Angle Spinning NMR.
Related Articles Accurate Determination of Interstrand Distances and Alignment in Amyloid Fibrils by Magic Angle Spinning NMR.
J Phys Chem B. 2010 Oct 6;
Authors: Caporini MA, Bajaj VS, Veshtort M, Fitzpatrick A, Macphee CE, Vendruscolo M, Dobson CM, Griffin RG
Amyloid fibrils are structurally ordered aggregates of proteins whose formation is associated with many neurodegenerative and other diseases. For that reason, their high-resolution...