BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-23-2011, 05:41 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR.

Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR.

Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR.

Nat Chem Biol. 2011 Mar 20;

Authors: Ullrich SJ, Hellmich UA, Ullrich S, Glaubitz C

The simultaneous observation of interdependent reactions within different phases as catalyzed by membrane-bound enzymes is still a challenging task. One such enzyme, the Escherichia coli integral membrane protein diacylglycerol kinase (DGK), is a key player in lipid regulation. It catalyzes the generation of phosphatidic acid within the membrane through the transfer of the ?-phosphate from soluble MgATP to membrane-bound diacylglycerol. We demonstrate that time-resolved (31)P magic angle spinning NMR offers a unique opportunity to simultaneously and directly detect both ATP hydrolysis and diacylglycerol phosphorylation. This experiment demonstrates that solid-state NMR provides a general approach for the kinetic analysis of coupled reactions at the membrane interface regardless of their compartmentalization. The enzymatic activity of DGK was probed with different lipid substrates as well as ATP analogs. Our data yield conclusions about intersubunit cooperativity, reaction stoichiometries and phosphoryl transfer mechanism and are discussed in the context of known structural data.

PMID: 21423170 [PubMed - as supplied by publisher]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR
Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR Caroline Haupt, Rica Patzschke, Ulrich Weininger, Stefan Gro?ger, Michael Kovermann and Jochen Balbach http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja2010048/aop/images/medium/ja-2011-010048_0002.gif Journal of the American Chemical Society DOI: 10.1021/ja2010048 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/nknzYbs0FNE
nmrlearner Journal club 0 06-30-2011 05:01 AM
Transient enzyme-substrate recognition monitored by real-time NMR.
Transient enzyme-substrate recognition monitored by real-time NMR. Transient enzyme-substrate recognition monitored by real-time NMR. J Am Chem Soc. 2011 Jun 10; Authors: Haupt C, Patzschke R, Weininger U, Gröger S, Kovermann M, Balbach J Slow protein folding processes during which kinetic folding intermediates occur for an extended time can lead to aggregation and dysfunction in living cells. Therefore protein folding helpers have evolved, which prevent proteins from aggregation and/ or speed up folding processes. In this study we present the...
nmrlearner Journal club 0 06-15-2011 01:15 PM
[NMR paper] How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli. Related Articles How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli. Chembiochem. 2005 Sep;6(9):1693-700 Authors: Lorch M, Faham S, Kaiser C, Weber I, Mason AJ, Bowie JU, Glaubitz C Several studies have demonstrated that it is viable to use microcrystalline preparations of water-soluble proteins as...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Protein folding studied by real-time NMR spectroscopy.
Protein folding studied by real-time NMR spectroscopy. Related Articles Protein folding studied by real-time NMR spectroscopy. Methods. 2004 Sep;34(1):65-74 Authors: Zeeb M, Balbach J Real-time NMR spectroscopy developed to a generally applicable method to follow protein folding reactions. It combines the access to high resolution data with kinetic experiments allowing very detailed insights into the development of the protein structure during different steps of folding. The present review concentrates mainly on the progress of real-time NMR...
nmrlearner Journal club 0 11-24-2010 10:01 PM
[NMR paper] Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optic
Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy. Related Articles Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy. J Mol Biol. 1998 Feb 27;276(3):657-67 Authors: Guijarro JI, Morton CJ, Plaxco KW, Campbell ID, Dobson CM The refolding kinetics of the chemically denatured SH3 domain of phosphatidylinositol 3'-kinase (PI3-SH3) have been monitored by real-time one-dimensional 1H NMR coupled with a variety of other biophysical techniques. These...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] Following protein folding in real time using NMR spectroscopy.
Following protein folding in real time using NMR spectroscopy. Related Articles Following protein folding in real time using NMR spectroscopy. Nat Struct Biol. 1995 Oct;2(10):865-70 Authors: Balbach J, Forge V, van Nuland NA, Winder SL, Hore PJ, Dobson CM The refolding of apo bovine alpha-lactalbumin has been monitored in real time by NMR spectroscopy following rapid in situ dilution of a chemically denatured state. By examining individual resonances in the time-resolved NMR spectra, the native state has been shown to emerge in a cooperative...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] Real-time NMR studies on a transient folding intermediate of barstar.
Real-time NMR studies on a transient folding intermediate of barstar. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Real-time NMR studies on a transient folding intermediate of barstar. Protein Sci. 1999 Jun;8(6):1286-91 Authors: Killick TR, Freund SM, Fersht AR The refolding of barstar, the intracellular...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:52 PM.


Map