BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 02:20 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Interaction of retroviral nucleocapsid proteins with transfer RNAPhe: a lead ribozyme

Interaction of retroviral nucleocapsid proteins with transfer RNAPhe: a lead ribozyme and 1H NMR study.

Related Articles Interaction of retroviral nucleocapsid proteins with transfer RNAPhe: a lead ribozyme and 1H NMR study.

Nucleic Acids Res. 1996 Sep 15;24(18):3568-75

Authors: Khan R, Chang HO, Kaluarachchi K, Giedroc DP

In the initiation of reverse transcription in retroviruses, nucleocapsid (NC) protein accelerates the rate of annealing of transfer RNA replication primer to a complementary sequence on the genomic RNA. In this report, we have probed the conformational changes induced by HIV-1 NC protein and domain deletion mutants in a structurally well-characterized transfer RNA, yeast tRNAPhe, as a model for the natural primer. One molar equivalent of recombinant 71 amino acid HIV-1 nucleocapsid protein (NC 1-71) is sufficient to completely inhibit the Pb2(+)-ribozyme activity of tRNAPhe at 25 degrees C, pH 7.0 and 15 mM MgCl2, Zn2 HIV-1 NC proteins which lack one or both flexible terminal domains also inhibit the ribozyme activity. 1H NMR spectra acquired for Mg(2+)-tRNAPhe suggest that NC 1-71 and NC 12-55 (lacking residues 1-11 and 56-71) inhibit the lead-ribozyme activity by only modestly altering the active site region rather than inducing large-scale unfolding of the molecule. In the absence of Mg2+, the extent of destabilization of tRNAPhe is greater but appears to be confined to internal regions of the acceptor and T psi C helices, as evidenced by the selectively enhanced exchange rates for imino protons associated with these base pairs. These findings show that NC destabilizes the folded form of tRNAPhe and by extension, other complex RNAs, in tertiary and secondary structural regions most susceptible to thermally-induced denaturation.

PMID: 8836184 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Estimating side-chain order in methyl-protonated, perdeuterated proteins via multiple-quantum relaxation violated coherence transfer NMR spectroscopy
Estimating side-chain order in methyl-protonated, perdeuterated proteins via multiple-quantum relaxation violated coherence transfer NMR spectroscopy Abstract Relaxation violated coherence transfer NMR spectroscopy (Tugarinov et al. in J Am Chem Soc 129:1743â??1750, 2007) is an established experimental tool for quantitative estimation of the amplitudes of side-chain motions in methyl-protonated, highly deuterated proteins. Relaxation violated coherence transfer experiments monitor the build-up of methyl proton multiple-quantum coherences that can be created in magnetically equivalent...
nmrlearner Journal club 0 02-11-2012 10:31 AM
Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins.
Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins. Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins. J Biol Chem. 2011 Apr 20; Authors: Iwasa H, Meshitsuka S, Hongo K, Mizobata T, Kawata Y Co-chaperonin GroES from E. coli works with chaperonin GroEL to mediate the folding reactions of various proteins. However, under specific conditions, i. e., the...
nmrlearner Journal club 0 04-22-2011 02:00 PM
The interaction of La(3+) complexes of DOTA/DTPA glycoconjugates with the RCA(120) lectin: a saturation transfer difference NMR spectroscopic study.
The interaction of La(3+) complexes of DOTA/DTPA glycoconjugates with the RCA(120) lectin: a saturation transfer difference NMR spectroscopic study. The interaction of La(3+) complexes of DOTA/DTPA glycoconjugates with the RCA(120) lectin: a saturation transfer difference NMR spectroscopic study. J Biol Inorg Chem. 2011 Apr 3; Authors: Teixeira JM, Dias DM, Cañada FJ, Martins JA, André JP, Jiménez-Barbero J, Geraldes CF The study of ligand-receptor interactions using high-resolution NMR techniques, namely the saturation transfer difference (STD),...
nmrlearner Journal club 0 04-05-2011 10:22 PM
[NMR paper] Probing specific lipid-protein interaction by saturation transfer difference NMR spectroscopy.
Probing specific lipid-protein interaction by saturation transfer difference NMR spectroscopy. Related Articles Probing specific lipid-protein interaction by saturation transfer difference NMR spectroscopy. J Am Chem Soc. 2005 Sep 28;127(38):13110-1 Authors: Soubias O, Gawrisch K We studied the interaction of mono- and polyunsaturated phosphatidylcholines with rhodopsin by 1H NMR saturation transfer difference spectroscopy with magic angle spinning (STD-MAS NMR). The results indicate a strong preference for interaction of rhodopsin with the...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Heteronuclear NMR studies of the interaction of tRNA(Lys)3 with HIV-1 nucleocapsid pr
Heteronuclear NMR studies of the interaction of tRNA(Lys)3 with HIV-1 nucleocapsid protein. Related Articles Heteronuclear NMR studies of the interaction of tRNA(Lys)3 with HIV-1 nucleocapsid protein. J Mol Biol. 2001 Feb 23;306(3):443-54 Authors: Tisné C, Roques BP, Dardel F Reverse transcription of HIV-1 viral RNA uses human tRNA(Lys)3 as a primer. Recombinant tRNA(Lys)3 was previously overexpressed in Escherichia coli, 15N-labelled and purified for NMR studies. It was shown to be functional for priming of HIV-1 reverse transcription. Using...
nmrlearner Journal club 0 11-19-2010 08:32 PM
Structure of a Conserved Retroviral RNA Packaging Element by NMR Spectroscopy and Cry
Structure of a Conserved Retroviral RNA Packaging Element by NMR Spectroscopy and Cryo-Electron Tomography. Related Articles Structure of a Conserved Retroviral RNA Packaging Element by NMR Spectroscopy and Cryo-Electron Tomography. J Mol Biol. 2010 Oct 6; Authors: Miyazaki Y, Irobalieva RN, Tolbert B, Smalls-Mantey A, Iyalla K, Loeliger K, D'Souza V, Khant H, Schmid MF, Garcia E, Telesnitsky A, Chiu W, Summers MF The 5'-untranslated regions (5'-UTRs) of all gammaretroviruses contain a conserved "double hairpin motif" (?(CD)) that is required for...
nmrlearner Journal club 0 10-12-2010 02:52 PM
[NMR paper] 19F-NMR studies of retinol transfer between cellular retinol binding proteins and pho
19F-NMR studies of retinol transfer between cellular retinol binding proteins and phospholipid vesicles. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles 19F-NMR studies of retinol transfer between cellular retinol binding proteins and phospholipid vesicles. FEBS Lett. 1997 Feb 3;402(2-3):116-20 Authors: Rong D, Lin CL, d'Avignon DA, Lovey AJ, Rosenberger M, Li E The cellular retinol binding proteins, CRBP and CRBP II, are implicated in the cellular uptake of retinol...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] 19F-NMR studies of retinol transfer between cellular retinol binding proteins and pho
19F-NMR studies of retinol transfer between cellular retinol binding proteins and phospholipid vesicles. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles 19F-NMR studies of retinol transfer between cellular retinol binding proteins and phospholipid vesicles. FEBS Lett. 1997 Feb 3;402(2-3):116-20 Authors: Rong D, Lin CL, d'Avignon DA, Lovey AJ, Rosenberger M, Li E The cellular retinol binding proteins, CRBP and CRBP II, are implicated in the cellular uptake of retinol...
nmrlearner Journal club 0 08-22-2010 03:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:44 AM.


Map