In recent years, Saturation Transfer Difference NMR (STD NMR) has been proven to be a powerful and versatile ligand-based NMR technique to elucidate crucial aspects in the investigation of protein-ligand complexes. Novel STD NMR approaches relying on "multi-frequency" irradiation have enabled us to even elucidate specific ligand-amino acid interactions and explore the binding of fragments in previously unknown binding subsites. Exploring multi-subsite protein binding pockets is especially...
[NMR paper] Exploring Multi-Subsite Binding Pockets in Proteins: DEEP-STD NMR Fingerprinting and Molecular Dynamics Unveil a Cryptic Subsite at the GM1 Binding Pocket of Cholera Toxin B.
Exploring Multi-Subsite Binding Pockets in Proteins: DEEP-STD NMR Fingerprinting and Molecular Dynamics Unveil a Cryptic Subsite at the GM1 Binding Pocket of Cholera Toxin B.
Exploring Multi-Subsite Binding Pockets in Proteins: DEEP-STD NMR Fingerprinting and Molecular Dynamics Unveil a Cryptic Subsite at the GM1 Binding Pocket of Cholera Toxin B.
Chemistry. 2020 May 25;:
Authors: Monaco S, Walpole S, Doukani H, Nepravishta R, Nepravishta R, Martínez-Bailén M, Carmona AT, Ramos-Soriano J, Bergström M, Robina I, Angulo J, Angulo J, Angulo J
...
[NMR paper] Solution NMR Studies of the Ligand-Binding Domain of an Orphan Nuclear Receptor Reveals a Dynamic Helix in the Ligand-Binding Pocket.
Solution NMR Studies of the Ligand-Binding Domain of an Orphan Nuclear Receptor Reveals a Dynamic Helix in the Ligand-Binding Pocket.
Solution NMR Studies of the Ligand-Binding Domain of an Orphan Nuclear Receptor Reveals a Dynamic Helix in the Ligand-Binding Pocket.
Biochemistry. 2018 Mar 16;:
Authors: Daffern N, Chen Z, Zhang Y, Pick L, Radhakrishnan I
Abstract
The ligand-binding domains (LBD) of the NR5A subfamily of nuclear receptors activate transcription via ligand-dependent and ligand-independent mechanisms. The...
nmrlearner
Journal club
0
03-17-2018 12:12 PM
Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets
Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets
Wan-Na Chen, Christoph Nitsche, Kala Bharath Pilla, Bim Graham, Thomas Huber, Christian D. Klein and Gottfried Otting
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.6b00416/20160324/images/medium/ja-2016-004167_0006.gif
Journal of the American Chemical Society
DOI: 10.1021/jacs.6b00416
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/yfHNdUxBP5M
nmrlearner
Journal club
0
03-25-2016 04:12 PM
[NMR paper] Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets.
Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets.
Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets.
J Am Chem Soc. 2016 Mar 14;
Authors: Chen WN, Nitsche C, Pilla KB, Graham B, Huber T, Klein CD, Otting G
Abstract
Structure-guided drug design relies on detailed structural knowledge of protein-ligand complexes, but crystallization of co-complexes is not always possible. Here we present a sensitive nuclear...
nmrlearner
Journal club
0
03-15-2016 11:57 AM
[NMR paper] NMR study to identify a ligand-binding pocket in ras.
NMR study to identify a ligand-binding pocket in ras.
Related Articles NMR study to identify a ligand-binding pocket in ras.
Enzymes. 2013;33:15-39
Authors: Maurer T, Wang W
Abstract
Despite decades of intense drug discovery efforts, to date no small molecules have been described that directly bind to Ras protein and effectively antagonize its function. In order to identify and characterize small-molecule binders to KRas, we carried out a fragment-based lead discovery effort. A ligand-detected primary nuclear magnetic resonance...
nmrlearner
Journal club
0
07-20-2014 03:27 PM
[NMR paper] CORCEMA refinement of the bound ligand conformation within the protein binding pocket
CORCEMA refinement of the bound ligand conformation within the protein binding pocket in reversibly forming weak complexes using STD-NMR intensities.
Related Articles CORCEMA refinement of the bound ligand conformation within the protein binding pocket in reversibly forming weak complexes using STD-NMR intensities.
J Magn Reson. 2004 May;168(1):36-45
Authors: Jayalakshmi V, Rama Krishna N
We describe an intensity-restrained optimization procedure for refining approximate structures of ligands within the protein binding pockets using STD-NMR...
nmrlearner
Journal club
0
11-24-2010 09:51 PM
[NMR paper] The inter-ligand Overhauser effect: a powerful new NMR approach for mapping structura
The inter-ligand Overhauser effect: a powerful new NMR approach for mapping structural relationships of macromolecular ligands.
Related Articles The inter-ligand Overhauser effect: a powerful new NMR approach for mapping structural relationships of macromolecular ligands.
J Biomol NMR. 1999 Sep;15(1):71-6
Authors: Li D, DeRose EF, London RE
NMR experiments that transfer conformational information from the bound to the uncomplexed state via exchange have been utilized for many years. It is demonstrated here that inter-ligand NOEs ('ILOEs'),...