Related ArticlesIntegrated description of protein dynamics from room-temperature X-ray crystallography and NMR.
Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):E445-54
Authors: Fenwick RB, van den Bedem H, Fraser JS, Wright PE
Abstract
Detailed descriptions of atomic coordinates and motions are required for an understanding of protein dynamics and their relation to molecular recognition, catalytic function, and allostery. Historically, NMR relaxation measurements have played a dominant role in the determination of the amplitudes and timescales (picosecond-nanosecond) of bond vector fluctuations, whereas high-resolution X-ray diffraction experiments can reveal the presence of and provide atomic coordinates for multiple, weakly populated substates in the protein conformational ensemble. Here we report a hybrid NMR and X-ray crystallography analysis that provides a more complete dynamic picture and a more quantitative description of the timescale and amplitude of fluctuations in atomic coordinates than is obtainable from the individual methods alone. Order parameters (S(2)) were calculated from single-conformer and multiconformer models fitted to room temperature and cryogenic X-ray diffraction data for dihydrofolate reductase. Backbone and side-chain order parameters derived from NMR relaxation experiments are in excellent agreement with those calculated from the room-temperature single-conformer and multiconformer models, showing that the picosecond timescale motions observed in solution occur also in the crystalline state. These motions are quenched in the crystal at cryogenic temperatures. The combination of NMR and X-ray crystallography in iterative refinement promises to provide an atomic resolution description of the alternate conformational substates that are sampled through picosecond to nanosecond timescale fluctuations of the protein structure. The method also provides insights into the structural heterogeneity of nonmethyl side chains, aromatic residues, and ligands, which are less commonly analyzed by NMR relaxation measurements.
Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control
From The DNP-NMR Blog:
Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control
Sakaguchi, S., et al., Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013. 317(0): p. 679-684.
http://www.sciencedirect.com/science/article/pii/S0168583X13008872
nmrlearner
News from NMR blogs
0
01-23-2014 01:37 AM
Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control
From The DNP-NMR Blog:
Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control
Sakaguchi, S., et al., Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013(0).
http://www.sciencedirect.com/science/article/pii/S0168583X13008872
nmrlearner
News from NMR blogs
0
11-21-2013 01:14 AM
Variable-Temperature 17O NMR Studies AllowQuantitative Evaluation of Molecular Dynamics in Organic Solids
Variable-Temperature 17O NMR Studies AllowQuantitative Evaluation of Molecular Dynamics in Organic Solids
Xianqi Kong, Luke A. O’Dell, Victor Terskikh, Eric Ye, Ruiyao Wang and Gang Wu
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja306227p/aop/images/medium/ja-2012-06227p_0009.gif
Journal of the American Chemical Society
DOI: 10.1021/ja306227p
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/uHVEpjPYP0w
nmrlearner
Journal club
0
08-24-2012 06:42 AM
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy
Abstract Long-range structural information derived from paramagnetic relaxation enhancement observed in the presence of a paramagnetic nitroxide radical is highly useful for structural characterization of globular, modular and intrinsically disordered proteins, as well as proteinâ??protein and protein-DNA complexes. Here we characterized the conformation of a spin-label attached to the homodimeric protein CylR2 using a combination of X-ray crystallography, electron...
nmrlearner
Journal club
0
01-31-2011 06:03 AM
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy.
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy.
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy.
J Biomol NMR. 2011 Jan 28;
Authors: Gruene T, Cho MK, Karyagina I, Kim HY, Grosse C, Giller K, Zweckstetter M, Becker S
Long-range structural information derived from paramagnetic relaxation enhancement observed in the presence of a paramagnetic nitroxide radical is highly useful for structural characterization of...
[NMR paper] Improving NMR sensitivity in room temperature and cooled probes with dipolar ions.
Improving NMR sensitivity in room temperature and cooled probes with dipolar ions.
Related Articles Improving NMR sensitivity in room temperature and cooled probes with dipolar ions.
J Magn Reson. 2005 Apr;173(2):339-43
Authors: Lane AN, Arumugam S
The response of inverse triple resonance cold and conventional probes to ionic strength has been compared under a variety of conditions relevant to protein NMR. Increasing the salt concentration degrades probe performance in terms of sensitivity, and the effect is more severe for cold probes and...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] Temperature dependence of NMR order parameters and protein dynamics.
Temperature dependence of NMR order parameters and protein dynamics.
Related Articles Temperature dependence of NMR order parameters and protein dynamics.
J Am Chem Soc. 2003 Sep 17;125(37):11158-9
Authors: Massi F, Palmer AG
The helical subdomain, HP36, of the F-actin-binding headpiece domain of chicken villin, is the smallest naturally occurring polypeptide that folds to a thermostable compact structure. Unconstrained molecular dynamics simulations and constrained molecular dynamics simulations using umbrella sampling are used to study the...