BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-18-2017, 11:35 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,714
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default An Integrated Approach to Unique NMR Assignment of Methionine Methyl Resonances in Proteins.

An Integrated Approach to Unique NMR Assignment of Methionine Methyl Resonances in Proteins.

Related Articles An Integrated Approach to Unique NMR Assignment of Methionine Methyl Resonances in Proteins.

Anal Chem. 2017 Feb 07;89(3):1610-1616

Authors: Yu F, Qiao J, Robblee J, Tsao D, Anderson J, Capila I

Abstract
The application of methyl nuclear magnetic resonance (NMR) spectroscopy in protein side-chain structural studies offers unique advantages of greater peak sensitivity, even for high-molecular-weight proteins. Traditionally, the utility of methyl NMR has often been limited by the difficulty in assigning the methyl resonances. Herein, a mass spectrometry (MS)-assisted strategy to assign the methyl resonances of methionine residues is presented. The strategy involves partially oxidizing the methionine and quantifying the oxidation level by both NMR and liquid chromatography-mass spectrometry (LC-MS). The NMR assignment of methyl resonances of methionine is made by correlating the quantitative results obtained from both NMR and MS. The method has been successfully demonstrated using the proteins hen egg-white lysozyme (HEWL) and porcine pepsin. The technique described herein can help facilitate the application of methyl NMR as a useful tool to study protein structure, dynamics, and interactions.


PMID: 28208280 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Assignment of methyl NMR resonances of a 52*kDa protein with residue-specific 4D correlation maps.
Assignment of methyl NMR resonances of a 52*kDa protein with residue-specific 4D correlation maps. Related Articles Assignment of methyl NMR resonances of a 52*kDa protein with residue-specific 4D correlation maps. J Biomol NMR. 2015 May 8; Authors: Mishra SH, Frueh DP Abstract Methyl groups have become key probes for structural and functional studies by nuclear magnetic resonance. However, their NMR signals cluster in a small spectral region and assigning their resonances can be a tedious process. Here, we present a method...
nmrlearner Journal club 0 05-10-2015 03:50 AM
Assignment of methyl NMR resonances of a 52Â*kDa protein with residue-specific 4D correlation maps
Assignment of methyl NMR resonances of a 52Â*kDa protein with residue-specific 4D correlation maps Abstract Methyl groups have become key probes for structural and functional studies by nuclear magnetic resonance. However, their NMR signals cluster in a small spectral region and assigning their resonances can be a tedious process. Here, we present a method that facilitates assignment of methyl resonances from assigned amide groups. Calculating the covariance between sensitive methyl and amide 3D spectra, each providing correlations to Cα and Cβ...
nmrlearner Journal club 0 05-07-2015 03:04 PM
FLAMEnGO 2.0: An Enhanced Fuzzy Logic Algorithm for Structure-Based Assignment of Methyl Group Resonances
FLAMEnGO 2.0: An Enhanced Fuzzy Logic Algorithm for Structure-Based Assignment of Methyl Group Resonances Publication date: Available online 2 May 2014 Source:Journal of Magnetic Resonance</br> Author(s): Fa-An Chao , Jonggul Kim , Youlin Xia , Michael Milligan , Nancy Rowe , Gianluigi Veglia</br> We present an enhanced version of the FLAMEnGO (Fuzzy Logic Assignment of Methyl Group) software, a structure-based method to assign methyl group resonances in large proteins. FLAMEnGO utilizes a fuzzy logic algorithm coupled with Monte Carlo sampling to obtain a...
nmrlearner Journal club 0 05-02-2014 06:49 PM
Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methylâ??methyl nuclear overhauser enhancement spectroscopy
Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methylâ??methyl nuclear overhauser enhancement spectroscopy Abstract Methyl-transverse relaxation optimized spectroscopy is rapidly becoming the preferred NMR technique for probing structure and dynamics of very large proteins up to ~1 MDa in molecular size. Data interpretation, however, necessitates assignment of methyl groups which still presents a very challenging and time-consuming process. Here we demonstrate that, in combination with a known 3D structure, paramagnetic...
nmrlearner Journal club 0 09-26-2011 06:42 AM
An intraresidual i(HCA)CO(CA)NH experiment for the assignment of main-chain resonances in 15N, 13C labeled proteins
An intraresidual i(HCA)CO(CA)NH experiment for the assignment of main-chain resonances in 15N, 13C labeled proteins Abstract An improved pulse sequence, intraresidual i(HCA)CO(CA)NH, is described for establishing solely 13Câ?²(i), 15N(i), 1HN(i) connectivities in uniformly 15N/13C-labeled proteins. In comparison to the â??out-and-backâ?? style intra-HN(CA)CO experiment, the new pulse sequence offers at least two-fold higher experimental resolution in the 13Câ?² dimension and on average 1.6 times higher sensitivity especially for residues in α-helices. Performance of the new experiment...
nmrlearner Journal club 0 01-09-2011 12:46 PM
Integrated Computational Approach to the Analysis of NMR Relaxation in Proteins: Application to ps-ns Main Chain (15)N-(1)H and Global Dynamics of the Rho GTPase Binding Domain of Plexin-B1.
Integrated Computational Approach to the Analysis of NMR Relaxation in Proteins: Application to ps-ns Main Chain (15)N-(1)H and Global Dynamics of the Rho GTPase Binding Domain of Plexin-B1. Integrated Computational Approach to the Analysis of NMR Relaxation in Proteins: Application to ps-ns Main Chain (15)N-(1)H and Global Dynamics of the Rho GTPase Binding Domain of Plexin-B1. J Phys Chem B. 2010 Dec 10; Authors: Zerbetto M, Buck M, Meirovitch E, Polimeno A
nmrlearner Journal club 0 12-15-2010 12:03 PM
[NMR paper] Mass spectrometry assisted assignment of NMR resonances in 15N labeled proteins.
Mass spectrometry assisted assignment of NMR resonances in 15N labeled proteins. Related Articles Mass spectrometry assisted assignment of NMR resonances in 15N labeled proteins. J Am Chem Soc. 2004 Nov 10;126(44):14377-9 Authors: Feng L, Orlando R, Prestegard JH Application of nuclear magnetic resonance (NMR) methods for the structural characterization to larger and more complex protein systems can be facilitated through the development of new methods for resonance assignment. Here, a novel approach that relies on integration of NMR and mass...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] NMR studies of the methionine methyl groups in calmodulin.
NMR studies of the methionine methyl groups in calmodulin. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR studies of the methionine methyl groups in calmodulin. FEBS Lett. 1995 Jun 12;366(2-3):104-8 Authors: Siivari K, Zhang M, Palmer AG, Vogel HJ Calmodulin (CaM) is a ubiquitous Ca(2+)-binding protein that can regulate a wide variety of cellular events. The protein contains 9 Met out of a total of 148 amino acid residues. The binding of Ca2+ to CaM induces...
nmrlearner Journal club 0 08-22-2010 03:41 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:24 PM.


Map