Related ArticlesAn Integrated Approach to Unique NMR Assignment of Methionine Methyl Resonances in Proteins.
Anal Chem. 2017 Feb 07;89(3):1610-1616
Authors: Yu F, Qiao J, Robblee J, Tsao D, Anderson J, Capila I
Abstract
The application of methyl nuclear magnetic resonance (NMR) spectroscopy in protein side-chain structural studies offers unique advantages of greater peak sensitivity, even for high-molecular-weight proteins. Traditionally, the utility of methyl NMR has often been limited by the difficulty in assigning the methyl resonances. Herein, a mass spectrometry (MS)-assisted strategy to assign the methyl resonances of methionine residues is presented. The strategy involves partially oxidizing the methionine and quantifying the oxidation level by both NMR and liquid chromatography-mass spectrometry (LC-MS). The NMR assignment of methyl resonances of methionine is made by correlating the quantitative results obtained from both NMR and MS. The method has been successfully demonstrated using the proteins hen egg-white lysozyme (HEWL) and porcine pepsin. The technique described herein can help facilitate the application of methyl NMR as a useful tool to study protein structure, dynamics, and interactions.
[NMR paper] Assignment of methyl NMR resonances of a 52*kDa protein with residue-specific 4D correlation maps.
Assignment of methyl NMR resonances of a 52*kDa protein with residue-specific 4D correlation maps.
Related Articles Assignment of methyl NMR resonances of a 52*kDa protein with residue-specific 4D correlation maps.
J Biomol NMR. 2015 May 8;
Authors: Mishra SH, Frueh DP
Abstract
Methyl groups have become key probes for structural and functional studies by nuclear magnetic resonance. However, their NMR signals cluster in a small spectral region and assigning their resonances can be a tedious process. Here, we present a method...
nmrlearner
Journal club
0
05-10-2015 03:50 AM
Assignment of methyl NMR resonances of a 52Â*kDa protein with residue-specific 4D correlation maps
Assignment of methyl NMR resonances of a 52Â*kDa protein with residue-specific 4D correlation maps
Abstract
Methyl groups have become key probes for structural and functional studies by nuclear magnetic resonance. However, their NMR signals cluster in a small spectral region and assigning their resonances can be a tedious process. Here, we present a method that facilitates assignment of methyl resonances from assigned amide groups. Calculating the covariance between sensitive methyl and amide 3D spectra, each providing correlations to Cα and Cβ...
nmrlearner
Journal club
0
05-07-2015 03:04 PM
FLAMEnGO 2.0: An Enhanced Fuzzy Logic Algorithm for Structure-Based Assignment of Methyl Group Resonances
FLAMEnGO 2.0: An Enhanced Fuzzy Logic Algorithm for Structure-Based Assignment of Methyl Group Resonances
Publication date: Available online 2 May 2014
Source:Journal of Magnetic Resonance</br>
Author(s): Fa-An Chao , Jonggul Kim , Youlin Xia , Michael Milligan , Nancy Rowe , Gianluigi Veglia</br>
We present an enhanced version of the FLAMEnGO (Fuzzy Logic Assignment of Methyl Group) software, a structure-based method to assign methyl group resonances in large proteins. FLAMEnGO utilizes a fuzzy logic algorithm coupled with Monte Carlo sampling to obtain a...
nmrlearner
Journal club
0
05-02-2014 06:49 PM
Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methylâ??methyl nuclear overhauser enhancement spectroscopy
Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methylâ??methyl nuclear overhauser enhancement spectroscopy
Abstract Methyl-transverse relaxation optimized spectroscopy is rapidly becoming the preferred NMR technique for probing structure and dynamics of very large proteins up to ~1 MDa in molecular size. Data interpretation, however, necessitates assignment of methyl groups which still presents a very challenging and time-consuming process. Here we demonstrate that, in combination with a known 3D structure, paramagnetic...
nmrlearner
Journal club
0
09-26-2011 06:42 AM
An intraresidual i(HCA)CO(CA)NH experiment for the assignment of main-chain resonances in 15N, 13C labeled proteins
An intraresidual i(HCA)CO(CA)NH experiment for the assignment of main-chain resonances in 15N, 13C labeled proteins
Abstract An improved pulse sequence, intraresidual i(HCA)CO(CA)NH, is described for establishing solely 13Câ?²(i), 15N(i), 1HN(i) connectivities in uniformly 15N/13C-labeled proteins. In comparison to the â??out-and-backâ?? style intra-HN(CA)CO experiment, the new pulse sequence offers at least two-fold higher experimental resolution in the 13Câ?² dimension and on average 1.6 times higher sensitivity especially for residues in α-helices. Performance of the new experiment...
[NMR paper] Mass spectrometry assisted assignment of NMR resonances in 15N labeled proteins.
Mass spectrometry assisted assignment of NMR resonances in 15N labeled proteins.
Related Articles Mass spectrometry assisted assignment of NMR resonances in 15N labeled proteins.
J Am Chem Soc. 2004 Nov 10;126(44):14377-9
Authors: Feng L, Orlando R, Prestegard JH
Application of nuclear magnetic resonance (NMR) methods for the structural characterization to larger and more complex protein systems can be facilitated through the development of new methods for resonance assignment. Here, a novel approach that relies on integration of NMR and mass...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
[NMR paper] NMR studies of the methionine methyl groups in calmodulin.
NMR studies of the methionine methyl groups in calmodulin.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR studies of the methionine methyl groups in calmodulin.
FEBS Lett. 1995 Jun 12;366(2-3):104-8
Authors: Siivari K, Zhang M, Palmer AG, Vogel HJ
Calmodulin (CaM) is a ubiquitous Ca(2+)-binding protein that can regulate a wide variety of cellular events. The protein contains 9 Met out of a total of 148 amino acid residues. The binding of Ca2+ to CaM induces...