BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-03-2013, 10:13 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,791
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain

Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain

March 2012
Publication year: 2012
Source:Biochimie, Volume 94, Issue 3



The insulin-like growth factor binding proteins are a family of six proteins (IGFBP-1 to -6) that bind insulin-like growth factors-I and -II (IGF-I/II) with high affinity. In addition to regulating IGF actions, IGFBPs have IGF-independent functions. IGFBP-2, the largest member of this family, is over-expressed in many cancers and has been proposed as a possible target for the development of novel anti-cancer therapeutics. The IGFBPs have a common architecture consisting of conserved N- and C-terminal domains joined by a variable linker domain. The solution structure and dynamics of the C-terminal domain of human IGFBP-2 have been reported (Kuang Z. et al. J. Mol. Biol. 364, 690–704, 2006) but neither the N-domain (N-BP-2) nor the linker domain have been characterised. Here we present NMR resonance assignments for human N-BP-2, achieved by recording spectra at low protein concentration using non-uniform sampling and maximum entropy reconstruction. Analysis of secondary chemical shifts shows that N-BP-2 possesses a secondary structure similar to that of other IGFBPs. Although aggregation hampered determination of the solution structure for N-BP-2, a homology model was generated based on the high degree of sequence and structure homology exhibited by the IGFBPs. This model was consistent with experimental NMR and SAXS data and displayed some unique features such as a Pro/Ala-rich non-polar insert, which formed a flexible solvent-exposed loop on the surface of the protein opposite to the IGF-binding interface. NMR data indicated that this loop could adopt either of two alternate conformations in solution – an entirely flexible conformation and one containing nascent helical structure. This loop and an adjacent poly-proline sequence may comprise a potential SH3 domain interaction site for binding to other proteins.
Highlights

? Determined NMR peak assignments for N-domain of human IGFBP-2 (N-BP-2). ? NMR data indicate N-BP-2 structure is similar to N-domain of other IGFBPs. ? N-BP-2 has a Pro/Ala-rich loop that differs from other IGFBPs. ? NMR data show that the loop adopts two distinct conformations. ? The loop is a potential SH3 domain binding site.





More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain.
Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain. Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain. Biochimie. 2011 Sep 22; Authors: Galea CA, Mobli M, McNeil KA, Mulhern TD, Wallace JC, King GF, Forbes BE, Norton RS Abstract The insulin-like growth factor binding proteins are a family of six proteins (IGFBP-1 to 6) that bind insulin-like growth factors-I and -II (IGF-I/II) with high affinity. In addition...
nmrlearner Journal club 0 09-30-2011 06:00 AM
Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain.
Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain. Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain. Biochimie. 2011 Sep 22; Authors: Galea CA, Mobli M, McNeil KA, Mulhern TD, Wallace JC, King GF, Forbes BE, Norton RS Abstract The insulin-like growth factor binding proteins are a family of six proteins (IGFBP-1 to 6) that bind insulin-like growth factors-I and -II (IGF-I/II) with high affinity. In...
nmrlearner Journal club 0 09-30-2011 05:59 AM
Development of Non-Peptide Ligands of Growth Factor Receptor-Bound Protein 2-Src Homology 2 Domain Using Molecular Modeling and NMR Spectroscopy (†).
Development of Non-Peptide Ligands of Growth Factor Receptor-Bound Protein 2-Src Homology 2 Domain Using Molecular Modeling and NMR Spectroscopy (†). Development of Non-Peptide Ligands of Growth Factor Receptor-Bound Protein 2-Src Homology 2 Domain Using Molecular Modeling and NMR Spectroscopy (†). J Med Chem. 2011 Jan 27; Authors: Orcajo-Rinco?n AL, Ortega-Gutie?rrez S, Serrano P, Torrecillas IR, Wu?thrich K, Campillo M, Pardo L, Viso A, Benhamu? B, Lo?pez-Rodri?guez ML We report a novel series of non-peptide ligands that inhibit the growth...
nmrlearner Journal club 0 01-29-2011 12:35 PM
[NMR paper] NMR structural characterization of the N-terminal domain of the adenylyl cyclase-asso
NMR structural characterization of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum. Related Articles NMR structural characterization of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum. J Biomol NMR. 2004 May;29(1):73-84 Authors: Mavoungou C, Israel L, Rehm T, Ksiazek D, Krajewski M, Popowicz G, Noegel AA, Schleicher M, Holak TA Cyclase-associated proteins (CAPs) are highly conserved, ubiquitous actin binding proteins that are involved in...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] NMR 15N relaxation of the insulin-like growth factor (IGF)-binding domain of IGF bind
NMR 15N relaxation of the insulin-like growth factor (IGF)-binding domain of IGF binding protein-5 (IGFBP-5) determined free in solution and in complex with IGF-II. Related Articles NMR 15N relaxation of the insulin-like growth factor (IGF)-binding domain of IGF binding protein-5 (IGFBP-5) determined free in solution and in complex with IGF-II. Eur J Biochem. 2001 Feb;268(4):1058-65 Authors: Renner C, Holak T 15N NMR relaxation rates of mini-IGFBP-5, an N-terminal insulin-like growth factor binding domain of the insulin-like growth factor...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] The insulin-like growth factor (IGF)binding protein 1 binding epitope on IGF-I probed
The insulin-like growth factor (IGF)binding protein 1 binding epitope on IGF-I probed by heteronuclear NMR spectroscopy and mutational analysis. Related Articles The insulin-like growth factor (IGF)binding protein 1 binding epitope on IGF-I probed by heteronuclear NMR spectroscopy and mutational analysis. J Biol Chem. 1998 Sep 18;273(38):24701-7 Authors: Jansson M, Andersson G, Uhlén M, Nilsson B, Kördel J NMR spectroscopy studies and biosensor interaction analysis of native and site-directed mutants of insulin-like growth factor I (IGF-I) was...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] NMR restraint analysis of transforming growth factor alpha: a key component for NMR s
NMR restraint analysis of transforming growth factor alpha: a key component for NMR structure refinement. Related Articles NMR restraint analysis of transforming growth factor alpha: a key component for NMR structure refinement. Proteins. 1992 Aug;13(4):306-26 Authors: Brown FK, Hempel JC, Jeffs PW Structures of the protein, transforming growth factor alpha (TGF-alpha), have been derived from NMR data using distance geometry and subsequent energy refinement. Analysis of the sequential NOE distance bounds using a template algorithm provides a...
nmrlearner Journal club 0 08-21-2010 11:45 PM
[NMR paper] 1H-NMR assignment and secondary structure of human insulin-like growth factor-I (IGF-
1H-NMR assignment and secondary structure of human insulin-like growth factor-I (IGF-I) in solution. Related Articles 1H-NMR assignment and secondary structure of human insulin-like growth factor-I (IGF-I) in solution. J Biochem. 1992 Apr;111(4):529-36 Authors: Sato A, Nishimura S, Ohkubo T, Kyogoku Y, Koyama S, Kobayashi M, Yasuda T, Kobayashi Y Human insulin-like growth factor-I (IGF-I) was studied by two-dimensional 1H-NMR spectroscopy. Resonance assignments were obtained for all the backbone protons and almost all of the sidechain protons...
nmrlearner Journal club 0 08-21-2010 11:41 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:27 AM.


Map