Related ArticlesInsulin allosteric behavior: detection, identification, and quantification of allosteric states via 19F NMR.
Biochemistry. 2005 May 31;44(21):7656-68
Authors: Bonaccio M, Ghaderi N, Borchardt D, Dunn MF
The insulin hexamer is an allosteric protein widely used in formulations for the treatment of diabetes. The hexamer exhibits positive and negative cooperativity and apparent half-site binding activity, reflecting the interconversion of three allosteric states, designated as T6, T3R3, and R6. The hexamer contains two symmetry-related Zn2+ located 16 A apart on the 3-fold symmetry axis. In the transition of T3 units to R3 units, Zn2+ switches from an octahedral Zn2+ N3O3 complex (N is HisB10, O is H2O) to a distorted tetrahedral Zn2+ N3L complex (L is a monovalent anion). Hence, monovalent anions are allosteric ligands that stabilize R3 units of T3R3 and R6. Herein, we exploit the high sensitivity of 19F NMR chemical shifts and fluorinated carboxylates to reveal subtle differences in the anion-binding sites of T3R3 and R6. We show that the chemical shifts of 4- and 3-trifluoromethylbenzoate and 4- and 2-trifluoromethylcinnamate give bound resonances that distinguish between T3R3 and R6. 3-Trifluoromethylbenzoate and 2-trifluoromethylcinnamate also were shown to bind to the R3 units of T3R3 and R6 in two alternative, slowly interconverting modes with different microenvironments for the CF3 groups. Line width analysis shows that ligand off rates are slower by 1/10(3) than the diffusion limit, indicating a rate-limiting protein conformational transition. These studies confirm that the Seydoux, Malhotra, and Bernhard allosteric model (Bloom, C. R., Choi, W. E., Brzovic, P. S., Ha, J. J., Huang, S. T., Kaarsholm, N. C., and Dunn, M. F. (1995). J. Mol. Biol. 245, 324-330), provides a robust description of the insulin hexamer.
[NMR paper] Strategies for the NMR-based identification and optimization of allosteric protein kinase inhibitors.
Strategies for the NMR-based identification and optimization of allosteric protein kinase inhibitors.
Related Articles Strategies for the NMR-based identification and optimization of allosteric protein kinase inhibitors.
Chembiochem. 2005 Sep;6(9):1607-10
Authors: Jahnke W, Blommers MJ, Fernández C, Zwingelstein C, Amstutz R
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Comparative 2D NMR studies of human insulin and des-pentapeptide insulin: sequential
Comparative 2D NMR studies of human insulin and des-pentapeptide insulin: sequential resonance assignment and implications for protein dynamics and receptor recognition.
Related Articles Comparative 2D NMR studies of human insulin and des-pentapeptide insulin: sequential resonance assignment and implications for protein dynamics and receptor recognition.
Biochemistry. 1991 Jun 4;30(22):5505-15
Authors: Hua QX, Weiss MA
The solution structure and dynamics of human insulin are investigated by 2D 1H NMR spectroscopy in reference to a previously...