Most proteins are highly flexible and can adopt conformations that deviate from the energetically most favorable ground state. Structural information on these lowly populated, alternative conformations is often lacking, despite the functional importance of these states. Here, we study the pathway by which the Dcp1:Dcp2 mRNA decapping complex exchanges between an autoinhibited closed and an open conformation. We make use of methyl Carr-Purcell-Meiboom-Gill (CPMG) NMR relaxation dispersion (RD)...
[NMR paper] Isotope Labels Combined with Solution NMR Spectroscopy Make Visible the Invisible Conformations of Small-to-Large RNAs
Isotope Labels Combined with Solution NMR Spectroscopy Make Visible the Invisible Conformations of Small-to-Large RNAs
RNA is central to the proper function of cellular processes important for life on earth and implicated in various medical dysfunctions. Yet, RNA structural biology lags significantly behind that of proteins, limiting mechanistic understanding of RNA chemical biology. Fortunately, solution NMR spectroscopy can probe the structural dynamics of RNA in solution at atomic resolution, opening the door to their functional understanding. However, NMR analysis of RNA, with only...
nmrlearner
Journal club
0
04-22-2022 03:01 AM
[NMR paper] Volume and Compressibility Differences Between Protein Conformations Revealed by High-Pressure NMR.
Volume and Compressibility Differences Between Protein Conformations Revealed by High-Pressure NMR.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/https:--linkinghub.elsevier.com-ihub-images-cellhub.gif Related Articles Volume and Compressibility Differences Between Protein Conformations Revealed by High-Pressure NMR.
Biophys J. 2021 Jan 29;:
Authors: Xu X, Gagné D, Aramini JM, Gardner KH
Abstract
Proteins often interconvert between different conformations in ways critical to their function. While manipulating...
nmrlearner
Journal club
0
02-03-2021 01:55 AM
Application of methyl-TROSY to a large paramagnetic membrane protein without perdeuteration: 13 C-MMTS-labeled NADPH-cytochrome P450 oxidoreductase
Application of methyl-TROSY to a large paramagnetic membrane protein without perdeuteration: 13 C-MMTS-labeled NADPH-cytochrome P450 oxidoreductase
Abstract
NMR spectroscopy of membrane proteins involved in electron transport is difficult due to the presence of both the lipids and paramagnetic centers. Here we report the solution NMR study of the NADPH-cytochrome P450 oxidoreductase (POR) in its reduced and oxidized states. We interrogate POR, first, in its truncated soluble form (70Â*kDa), which is followed by experiments with the full-length protein...
nmrlearner
Journal club
0
11-22-2017 02:01 PM
[NMR paper] Bringing Dynamic Molecular Machines into Focus by Methyl-TROSY NMR.
Bringing Dynamic Molecular Machines into Focus by Methyl-TROSY NMR.
Related Articles Bringing Dynamic Molecular Machines into Focus by Methyl-TROSY NMR.
Annu Rev Biochem. 2014 Jun 2;83:291-315
Authors: Rosenzweig R, Kay LE
Abstract
Large macromolecular assemblies, so-called molecular machines, are critical to ensuring proper cellular function. Understanding how proper function is achieved at the atomic level is crucial to advancing multiple avenues of biomedical research. Biophysical studies often include X-ray diffraction and...
nmrlearner
Journal club
0
06-07-2014 07:12 PM
New technique to analyze conformations of complex molecular machines - Phys.Org
http://www.bionmr.com//t2.gstatic.com/images?q=tbn:ANd9GcRo1TkQ4r1fMpUxa3wD5SK2d2V8T_oG2l78aZVQEcL_XDMCV_pyy0Biarzf0xAik6wok_0CyH8
Phys.Org
<img alt="" height="1" width="1" />
New technique to analyze conformations of complex molecular machines
Phys.Org
"Structural techniques like X-ray crystallography and nuclear magnetic resonance have worked quite well to help us understand how smaller proteins function," Onuchic said. X-rays only take snapshots of constantly moving proteins, he said, "but ...
and more »
New technique to analyze conformations of complex molecular machines...
nmrlearner
Online News
0
03-14-2014 07:34 PM
Efficient Acquisition of High-Resolution 4-D Diagonal-Suppressed Methyl-Methyl NOESY for Large Proteins
Efficient Acquisition of High-Resolution 4-D Diagonal-Suppressed Methyl-Methyl NOESY for Large Proteins
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
Jie Wen, Jihui Wu, Pei Zhou</br>
The methyl-methyl NOESYexperimentplays an important role in determiningthe global folds of large proteins. Despite the high sensitivity of this experiment, the analysisof methyl-methyl NOEs is frequently hindered by the limited chemical shift dispersion of methyl groups, particularly methyl protons. Thismakes it difficult to unambiguously assign all of the methyl-methyl...
nmrlearner
Journal club
0
03-10-2012 10:54 AM
Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supra-Molecular Protein Systems: Applications to the Proteasome and to the ClpP Protease.
Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supra-Molecular Protein Systems: Applications to the Proteasome and to the ClpP Protease.
Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supra-Molecular Protein Systems: Applications to the Proteasome and to the ClpP Protease.
J Am Chem Soc. 2011 May 11;
Authors: Religa TL, Ruschak AM, Rosenzweig R, Kay LE
Methyl groups are powerful reporters of structure, motion and function in NMR studies of supra-molecular protein assemblies. Their...
nmrlearner
Journal club
0
05-12-2011 03:40 PM
Alanine Methyl Groups as NMR Probes of Molecular Structure and Dynamics in High-Molecular-Weight Proteins
Alanine Methyl Groups as NMR Probes of Molecular Structure and Dynamics in High-Molecular-Weight Proteins
Raquel Godoy-Ruiz, Chenyun Guo and Vitali Tugarinov
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja1083656/aop/images/medium/ja-2010-083656_0009.gif
Journal of the American Chemical Society
DOI: 10.1021/ja1083656
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/hxZ4cabF688