BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 10-05-2017, 07:28 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Insights into protein misfolding and aggregation enabled by solid-state NMR spectroscopy

Insights into protein misfolding and aggregation enabled by solid-state NMR spectroscopy

Publication date: Available online 4 October 2017
Source:Solid State Nuclear Magnetic Resonance

Author(s): Patrick C.A. van der Wel

The aggregation of proteins and peptides into a variety of insoluble, and often non-native, aggregated states plays a central role in many devastating diseases. Analogous processes undermine the efficacy of polypeptide-based biological pharmaceuticals, but are also being leveraged in the design of biologically inspired self-assembling materials. This Trends article surveys the essential contributions made by recent solid-state NMR (ssNMR) studies to our understanding of the structural features of polypeptide aggregates, and how such findings are informing our thinking about the molecular mechanisms of misfolding and aggregation. A central focus is on disease-related amyloid fibrils and oligomers involved in neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's disease. SSNMR-enabled structural and dynamics-based findings are surveyed, along with a number of resulting emerging themes that appear common to different amyloidogenic proteins, such as their compact alternating short-?-strand/?-arc amyloid core architecture. Concepts, methods, future prospects and challenges are discussed.
Graphical abstract








More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Structural Changes Associated with Transthyretin Misfolding and Amyloid Formation Revealed by Solution and Solid-State NMR.
Structural Changes Associated with Transthyretin Misfolding and Amyloid Formation Revealed by Solution and Solid-State NMR. Structural Changes Associated with Transthyretin Misfolding and Amyloid Formation Revealed by Solution and Solid-State NMR. Biochemistry. 2016 Mar 21; Authors: Lim KH, Dasari AK, Hung I, Gan Z, Kelly JW, Wemmer DE Abstract Elucidation of structural changes involved in protein misfolding and amyloid formation is crucial for unraveling the molecular basis of amyloid formation. Here we report structural...
nmrlearner Journal club 0 03-22-2016 01:46 PM
TrackingSodium-Antimonide Phase Transformations inSodium-Ion Anodes: Insights from Operando Pair Distribution FunctionAnalysis and Solid-State NMR Spectroscopy
TrackingSodium-Antimonide Phase Transformations inSodium-Ion Anodes: Insights from Operando Pair Distribution FunctionAnalysis and Solid-State NMR Spectroscopy Phoebe K. Allan, John M. Griffin, Ali Darwiche, Olaf J. Borkiewicz, Kamila M. Wiaderek, Karena W. Chapman, Andrew J. Morris, Peter J. Chupas, Laure Monconduit and Clare P. Grey http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.5b13273/20160215/images/medium/ja-2015-13273h_0008.gif Journal of the American Chemical Society DOI: 10.1021/jacs.5b13273...
nmrlearner Journal club 0 02-16-2016 12:40 AM
[NMR paper] Probing early misfolding events in prion protein mutants by NMR spectroscopy.
Probing early misfolding events in prion protein mutants by NMR spectroscopy. Related Articles Probing early misfolding events in prion protein mutants by NMR spectroscopy. Molecules. 2013;18(8):9451-76 Authors: Giachin G, Biljan I, Ilc G, Plavec J, Legname G Abstract The post-translational conversion of the ubiquitously expressed cellular form of the prion protein, PrPC, into its misfolded and pathogenic isoform, known as prion or PrPSc, plays a key role in prion diseases. These maladies are denoted transmissible spongiform...
nmrlearner Journal club 0 08-24-2013 04:53 PM
[NMR paper] Aggregation and dynamics of oligocholate transporters in phospholipid bilayers revealed by solid-state NMR spectroscopy.
Aggregation and dynamics of oligocholate transporters in phospholipid bilayers revealed by solid-state NMR spectroscopy. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Aggregation and dynamics of oligocholate transporters in phospholipid bilayers revealed by solid-state NMR spectroscopy. Langmuir. 2012 Dec 11;28(49):17071-8 Authors: Wang T, Widanapathirana L, Zhao Y, Hong M Abstract Macrocycles made of cholate building blocks were previously found to...
nmrlearner Journal club 0 05-22-2013 04:43 PM
Atomic Resolution Insights into the Aggregation of the Murine Prion Protein by NMR
Atomic Resolution Insights into the Aggregation of the Murine Prion Protein by NMR 29 January 2013 Publication year: 2013 Source:Biophysical Journal, Volume 104, Issue 2, Supplement 1</br> </br> </br> </br></br>
nmrlearner Journal club 0 02-03-2013 10:13 AM
Revealing Protein Structures in Solid-Phase Peptide Synthesis by 13C Solid-State NMR: Evidence of Excessive Misfolding for Alzheimer’s ?
Revealing Protein Structures in Solid-Phase Peptide Synthesis by 13C Solid-State NMR: Evidence of Excessive Misfolding for Alzheimer’s ? Songlin Wang and Yoshitaka Ishii http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja212190z/aop/images/medium/ja-2011-12190z_0002.gif Journal of the American Chemical Society DOI: 10.1021/ja212190z http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/6EE7uthrnLg
nmrlearner Journal club 0 01-31-2012 08:34 PM
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy Abstract It is shown that real-time 2D solid-state NMR can be used to obtain kinetic and structural information about the process of protein aggregation. In addition to the incorporation of kinetic information involving intermediate states, this approach can offer atom-specific resolution for all detectable species. The analysis was carried out using experimental data obtained during aggregation of the 10.4 kDa Crh protein, which has been shown to involve a partially unfolded intermediate...
nmrlearner Journal club 0 01-27-2011 04:31 AM
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy.
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy. Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy. J Biomol NMR. 2011 Jan 21; Authors: Etzkorn M, Böckmann A, Baldus M It is shown that real-time 2D solid-state NMR can be used to obtain kinetic and structural information about the process of protein aggregation. In addition to the incorporation of kinetic information involving intermediate states, this approach can offer atom-specific resolution for all...
nmrlearner Journal club 0 01-22-2011 01:52 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:16 PM.


Map