BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 02:20 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,776
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Insights into the local residual entropy of proteins provided by NMR relaxation.

Insights into the local residual entropy of proteins provided by NMR relaxation.

Related Articles Insights into the local residual entropy of proteins provided by NMR relaxation.

Protein Sci. 1996 Dec;5(12):2647-50

Authors: Li Z, Raychaudhuri S, Wand AJ

A simple model is used to illustrate the relationship between the dynamics measured by NMR relaxation methods and the local residual entropy of proteins. The expected local dynamic behavior of well-packed extended amino acid side chains are described by employing a one-dimensional vibrator that encapsulates both the spatial and temporal character of the motion. This model is then related to entropy and to the generalized order parameter of the popular "model-free" treatment often used in the analysis of NMR relaxation data. Simulations indicate that order parameters observed for the methyl symmetry axes in, for example, human ubiquitin correspond to significant local entropies. These observations have obvious significance for the issue of the physical basis of protein structure, dynamics, and stability.

PMID: 8976574 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
The Use of Residual Dipolar Coupling in Studying Proteins by NMR.
The Use of Residual Dipolar Coupling in Studying Proteins by NMR. The Use of Residual Dipolar Coupling in Studying Proteins by NMR. Top Curr Chem. 2011 Sep 28; Authors: Chen K, Tjandra N Abstract The development of residual dipolar coupling (RDC) in protein NMR spectroscopy, over a decade ago, has become a useful and almost routine tool for accurate protein solution structure determination. RDCs provide orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. Its measurement requires a...
nmrlearner Journal club 0 09-30-2011 06:00 AM
The Use of Residual Dipolar Coupling in Studying Proteins by NMR.
The Use of Residual Dipolar Coupling in Studying Proteins by NMR. The Use of Residual Dipolar Coupling in Studying Proteins by NMR. Top Curr Chem. 2011 Sep 28; Authors: Chen K, Tjandra N Abstract The development of residual dipolar coupling (RDC) in protein NMR spectroscopy, over a decade ago, has become a useful and almost routine tool for accurate protein solution structure determination. RDCs provide orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. Its measurement requires a...
nmrlearner Journal club 0 09-30-2011 05:59 AM
[NMR paper] Relating side-chain mobility in proteins to rotameric transitions: insights from mole
Relating side-chain mobility in proteins to rotameric transitions: insights from molecular dynamics simulations and NMR. Related Articles Relating side-chain mobility in proteins to rotameric transitions: insights from molecular dynamics simulations and NMR. J Biomol NMR. 2005 Jun;32(2):151-62 Authors: Hu H, Hermans J, Lee AL The dynamic aspect of proteins is fundamental to understanding protein stability and function. One of the goals of NMR studies of side-chain dynamics in proteins is to relate spin relaxation rates to discrete...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Probing residual interactions in unfolded protein states using NMR spin relaxation te
Probing residual interactions in unfolded protein states using NMR spin relaxation techniques: an application to delta131delta. Related Articles Probing residual interactions in unfolded protein states using NMR spin relaxation techniques: an application to delta131delta. J Am Chem Soc. 2003 Oct 1;125(39):11988-92 Authors: Choy WY, Kay LE Residual interactions in delta131delta, a large disordered fragment of staphylococcal nuclease, have been probed at two different pHs using backbone (15)N and side-chain methyl (2)H NMR spin relaxation...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Thermodynamic insights into proteins from NMR spin relaxation studies.
Thermodynamic insights into proteins from NMR spin relaxation studies. Related Articles Thermodynamic insights into proteins from NMR spin relaxation studies. Curr Opin Struct Biol. 2001 Oct;11(5):555-9 Authors: Spyracopoulos L, Sykes BD NMR spin relaxation measurements of picosecond to nanosecond timescale backbone and sidechain fluctuations of protein molecules, and subsequent entropic interpretation yield interesting, but sometimes counterintuitive, insights into proteins. The stabilities of proteins and protein interactions are achieved...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] NMR relaxation studies of the role of conformational entropy in protein stability and
NMR relaxation studies of the role of conformational entropy in protein stability and ligand binding. Related Articles NMR relaxation studies of the role of conformational entropy in protein stability and ligand binding. Acc Chem Res. 2001 May;34(5):379-88 Authors: Stone MJ Recent advances in the measurement and analysis of protein NMR relaxation data have made it possible to characterize the dynamical properties of many backbone and side chain groups. With certain caveats, changes in flexibility that occur upon ligand binding, mutation, or...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Local structural plasticity of the prion protein. Analysis of NMR relaxation dynamics
Local structural plasticity of the prion protein. Analysis of NMR relaxation dynamics. Related Articles Local structural plasticity of the prion protein. Analysis of NMR relaxation dynamics. Biochemistry. 2001 Mar 6;40(9):2743-53 Authors: Viles JH, Donne D, Kroon G, Prusiner SB, Cohen FE, Dyson HJ, Wright PE A template-assisted conformational change of the cellular prion protein (PrP(C)) from a predominantly helical structure to an amyloid-type structure with a higher proportion of beta-sheet is thought to be the causative factor in prion...
nmrlearner Journal club 0 11-19-2010 08:32 PM
Theoretical framework for NMR residual dipolar couplings in unfolded proteins
Theoretical framework for NMR residual dipolar couplings in unfolded proteins O. I. Obolensky, Kai Schlepckow, Harald Schwalbe and A. V. Solov’yov Journal of Biomolecular NMR; 2007; 39(1) pp 1-16 Abstract: A theoretical framework for the prediction of nuclear magnetic resonance (NMR) residual dipolar couplings (RDCs) in unfolded proteins under weakly aligning conditions is presented. The unfolded polypeptide chain is modeled as a random flight chain while the alignment medium is represented by a set of regularly arranged obstacles. For the case of bicelles oriented perpendicular to...
stewart Journal club 0 08-05-2008 02:26 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:56 AM.


Map