BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-24-2010, 09:25 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Insights into the interactions between a drug and a membrane protein target by fluori

Insights into the interactions between a drug and a membrane protein target by fluorine cross-polarization magic angle spinning NMR.

Related Articles Insights into the interactions between a drug and a membrane protein target by fluorine cross-polarization magic angle spinning NMR.

Magn Reson Chem. 2004 Feb;42(2):204-11

Authors: Boland MP, Middleton DA

The fluorinated anti-psychotic drug trifluoperazine (TFP) has been shown to be a K(+)-competitive inhibitor of gastric H(+)/K(+)-ATPase, a membrane-embedded therapeutic target for peptic ulcer disease. This paper describes how variable contact time (19)F cross-polarization magic angle spinning (VCT-CP/MAS) NMR has been used to probe the inhibitory interactions between TFP and H(+)/K(+)-ATPase in native gastric membranes. The (19)F CP/MAS spectra for TFP in H(+)/K(+)-ATPase enriched (GI) gastric membranes and in control membranes containing less than 5 nmol of the protein indicated that the drug associates with the membranes independently of the presence of H(+)/K(+)-ATPase. The (19)F peak intensities in the VCT-CP/MAS experiment confirmed that TFP undergoes slow dissociation (k(off) < 100 s(-1)) from binding sites in GI membranes, and more rapid dissociation (k(off) < 100 s(-1)) from control membranes. The spectra showed that up to 40% of bound TFP was displaced from GI membranes by 100 mM K(+) and by the K(+)-competitive inhibitor TMPIP, but TFP was not displaced from the control membranes. Hence the spectra of TFP in GI membranes represent the drug bound to the K(+)-competitive inhibitory site of H(+)/K(+)-ATPase and to other non-specific sites. The affinity of TFP for the K(+)-competitive site (K(D) = 4 mM) was determined from a binding curve of (19)F peak intensity versus TFP concentration after correction for non-specific binding. The K(D) was much higher than the IC(50) for ATPase inhibition (8 microM), which suggests that the substantial non-specific binding of TFP to the membranes contributes to ATPase inhibition. This novel approach to probing ligand binding can be applied to a wide range of membrane-embedded pharmaceutical targets, such as G-protein coupled receptors and ion channels, regardless of the size of the protein or strength of binding.

PMID: 14745801 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
NMR structures and interactions of temporin-1Tl and temporin-1Tb with lipopolysaccharide micelles: mechanistic insights into outer membrane permeabilization and synergistic activity.
NMR structures and interactions of temporin-1Tl and temporin-1Tb with lipopolysaccharide micelles: mechanistic insights into outer membrane permeabilization and synergistic activity. NMR structures and interactions of temporin-1Tl and temporin-1Tb with lipopolysaccharide micelles: mechanistic insights into outer membrane permeabilization and synergistic activity. J Biol Chem. 2011 Jul 8;286(27):24394-406 Authors: Bhunia A, Saravanan R, Mohanram H, Mangoni ML, Bhattacharjya S Abstract Temporins are a group of closely related short...
nmrlearner Journal club 0 09-09-2011 06:42 PM
Fluorine-Protein Interactions and (19)F NMR Isotropic Chemical Shifts: An Empirical Correlation with Implications for Drug Design.
Fluorine-Protein Interactions and (19)F NMR Isotropic Chemical Shifts: An Empirical Correlation with Implications for Drug Design. Related Articles Fluorine-Protein Interactions and (19)F NMR Isotropic Chemical Shifts: An Empirical Correlation with Implications for Drug Design. ChemMedChem. 2010 Nov 29; Authors: Dalvit C, Vulpetti A An empirical correlation between the fluorine isotropic chemical shifts, measured by (19)F NMR spectroscopy, and the type of fluorine-protein interactions observed in crystal structures is presented. The CF, CF(2), and...
nmrlearner Journal club 0 12-01-2010 04:41 PM
[NMR paper] New structural insights into carbohydrate-protein interactions from NMR spectroscopy.
New structural insights into carbohydrate-protein interactions from NMR spectroscopy. Related Articles New structural insights into carbohydrate-protein interactions from NMR spectroscopy. Curr Opin Struct Biol. 2003 Oct;13(5):646-53 Authors: Kogelberg H, Solís D, Jiménez-Barbero J Recently developed NMR methods have been applied to discover carbohydrate ligands for proteins and to identify their binding epitopes. The structural details of carbohydrate-protein complexes have also been examined by NMR, providing site-specific information on the...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Lipid-protein interactions in DHPC micelles containing the integral membrane protein
Lipid-protein interactions in DHPC micelles containing the integral membrane protein OmpX investigated by NMR spectroscopy. Related Articles Lipid-protein interactions in DHPC micelles containing the integral membrane protein OmpX investigated by NMR spectroscopy. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13533-7 Authors: Fernández C, Hilty C, Wider G, Wüthrich K Intermolecular nuclear Overhauser effects (NOEs) between the integral outer membrane protein OmpX from Escherichia coli and dihexanoylphosphatidylcholine (DHPC) provided a detailed...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] NMR investigations of protein-carbohydrate interactions: insights into the topology o
NMR investigations of protein-carbohydrate interactions: insights into the topology of the bound conformation of a lactose isomer and beta-galactosyl xyloses to mistletoe lectin and galectin-1. Related Articles NMR investigations of protein-carbohydrate interactions: insights into the topology of the bound conformation of a lactose isomer and beta-galactosyl xyloses to mistletoe lectin and galectin-1. Biochim Biophys Acta. 2001 Dec 19;1568(3):225-36 Authors: Alonso-Plaza JM, Canales MA, Jiménez M, Roldán JL, García-Herrero A, Iturrino L, Asensio JL,...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] NMR spectroscopy of alpha-crystallin. Insights into the structure, interactions and c
NMR spectroscopy of alpha-crystallin. Insights into the structure, interactions and chaperone action of small heat-shock proteins. Related Articles NMR spectroscopy of alpha-crystallin. Insights into the structure, interactions and chaperone action of small heat-shock proteins. Int J Biol Macromol. 1998 May-Jun;22(3-4):197-209 Authors: Carver JA, Lindner RA The subunit molecular mass of alpha-crystallin, like many small heat-shock proteins (sHsps), is around 20 kDa although the protein exists as a large aggregate of average mass around 800...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] 13C-NMR studies of membrane lipid-protein interactions upon protein heat denaturation
13C-NMR studies of membrane lipid-protein interactions upon protein heat denaturation. Related Articles 13C-NMR studies of membrane lipid-protein interactions upon protein heat denaturation. J Biochem Biophys Methods. 1991 Oct-Nov;23(3):259-61 Authors: YashRoy RC Spinach chloroplast membranes were studied by natural abundance carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopy in their normal state and after heat denaturation of membrane proteins. The membrane proteins were denatured by raising the temperature of the sample to 67...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] 13C-NMR studies of membrane lipid-protein interactions upon protein heat denaturation
13C-NMR studies of membrane lipid-protein interactions upon protein heat denaturation. Related Articles 13C-NMR studies of membrane lipid-protein interactions upon protein heat denaturation. J Biochem Biophys Methods. 1991 Oct-Nov;23(3):259-61 Authors: YashRoy RC Spinach chloroplast membranes were studied by natural abundance carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopy in their normal state and after heat denaturation of membrane proteins. The membrane proteins were denatured by raising the temperature of the sample to 67...
nmrlearner Journal club 0 08-21-2010 11:12 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:00 PM.


Map