The analysis of pressure induced changes in the chemical shift of proteins allows statements on structural fluctuations proteins exhibit at ambient pressure. The inherent issue of separating general pressure effects from structural related effects on the pressure dependence of chemical shifts has so far been addressed by considering the characteristics of random coil peptides on increasing pressure. In this work, chemically and pressure denatured states of the cold shock protein B from Bacillus...
[NMR paper] Insights into the Structure of Invisible Conformations of Large Methyl Group Labeled Molecular Machines from High Pressure NMR
Insights into the Structure of Invisible Conformations of Large Methyl Group Labeled Molecular Machines from High Pressure NMR
Most proteins are highly flexible and can adopt conformations that deviate from the energetically most favorable ground state. Structural information on these lowly populated, alternative conformations is often lacking, despite the functional importance of these states. Here, we study the pathway by which the Dcp1:Dcp2 mRNA decapping complex exchanges between an autoinhibited closed and an open conformation. We make use of methyl Carr-Purcell-Meiboom-Gill (CPMG)...
nmrlearner
Journal club
0
06-18-2023 07:41 PM
[NMR paper] Volume and Compressibility Differences Between Protein Conformations Revealed by High-Pressure NMR.
Volume and Compressibility Differences Between Protein Conformations Revealed by High-Pressure NMR.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/https:--linkinghub.elsevier.com-ihub-images-cellhub.gif Related Articles Volume and Compressibility Differences Between Protein Conformations Revealed by High-Pressure NMR.
Biophys J. 2021 Jan 29;:
Authors: Xu X, Gagné D, Aramini JM, Gardner KH
Abstract
Proteins often interconvert between different conformations in ways critical to their function. While manipulating...
nmrlearner
Journal club
0
02-03-2021 01:55 AM
[NMR paper] Monitoring protein folding through high pressure NMR spectroscopy.
Monitoring protein folding through high pressure NMR spectroscopy.
Monitoring protein folding through high pressure NMR spectroscopy.
Prog Nucl Magn Reson Spectrosc. 2017 Nov;102-103:15-31
Authors: Roche J, Royer CA, Roumestand C
Abstract
High-pressure is a well-known perturbation method used to destabilize globular proteins. It is perfectly reversible, which is essential for a proper thermodynamic characterization of a protein equilibrium. In contrast to other perturbation methods such as heat or chemical denaturant that...
nmrlearner
Journal club
0
11-22-2017 02:01 PM
[NMR paper] The Energetics of a Three-State Protein Folding System Probed by High-Pressure Relaxation Dispersion NMR Spectroscopy.
The Energetics of a Three-State Protein Folding System Probed by High-Pressure Relaxation Dispersion NMR Spectroscopy.
Related Articles The Energetics of a Three-State Protein Folding System Probed by High-Pressure Relaxation Dispersion NMR Spectroscopy.
Angew Chem Int Ed Engl. 2015 Sep 14;54(38):11157-11161
Authors: Tugarinov V, Libich DS, Meyer V, Roche J, Clore GM
Abstract
The energetic and volumetric properties of a three-state protein folding system, comprising a metastable triple mutant of the Fyn SH3 domain, have been...
nmrlearner
Journal club
0
09-10-2015 02:01 PM
[NMR paper] Impact of Hydrostatic Pressure on an Intrinsically Disordered Protein: A High-Pressure NMR Study of ?-Synuclein.
Impact of Hydrostatic Pressure on an Intrinsically Disordered Protein: A High-Pressure NMR Study of ?-Synuclein.
Related Articles Impact of Hydrostatic Pressure on an Intrinsically Disordered Protein: A High-Pressure NMR Study of ?-Synuclein.
Chembiochem. 2013 Jun 28;
Authors: Roche J, Ying J, Maltsev AS, Bax A
Abstract
The impact of pressure on the backbone (15) N, (1) H and (13) C chemical shifts in N-terminally acetylated ?-synuclein has been evaluated over a pressure range 1-2500 bar. Even while the chemical shifts fall very close...
nmrlearner
Journal club
0
07-03-2013 01:46 PM
High-Pressure Protein Crystallography and NMR to Explore Protein Conformations.
High-Pressure Protein Crystallography and NMR to Explore Protein Conformations.
High-Pressure Protein Crystallography and NMR to Explore Protein Conformations.
Annu Rev Biophys. 2010 Jul 21;
Authors: Collins MD, Kim CU, Gruner SM
High-pressure methods for solving protein structures by X-ray crystallography and NMR are maturing. These techniques are beginning to impact our understanding of thermodynamic and structural features that define not only the protein's native conformation, but also the higher free energy conformations. The ability of...
nmrlearner
Journal club
0
02-02-2011 02:40 AM
[NMR paper] Side-chains in native and random coil protein conformations. Analysis of NMR coupling
Side-chains in native and random coil protein conformations. Analysis of NMR coupling constants and chi1 torsion angle preferences.
Related Articles Side-chains in native and random coil protein conformations. Analysis of NMR coupling constants and chi1 torsion angle preferences.
J Mol Biol. 1998 Jul 31;280(5):867-77
Authors: West NJ, Smith LJ
The behaviour of amino acid side-chains in proteins in solution has been characterised by analysing NMR 3JHalphaH beta coupling constants and crystallographic chi1 torsion angles. Side-chains both in the...