BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-25-2010, 08:21 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Improving NMR sensitivity in room temperature and cooled probes with dipolar ions.

Improving NMR sensitivity in room temperature and cooled probes with dipolar ions.

Related Articles Improving NMR sensitivity in room temperature and cooled probes with dipolar ions.

J Magn Reson. 2005 Apr;173(2):339-43

Authors: Lane AN, Arumugam S

The response of inverse triple resonance cold and conventional probes to ionic strength has been compared under a variety of conditions relevant to protein NMR. Increasing the salt concentration degrades probe performance in terms of sensitivity, and the effect is more severe for cold probes and with increasing magnetic field strength. This is especially noticeable for experiments that involve a spin lock or decoupling, where sensitivity losses compared with pure water can be more than 2-fold. We have investigated the use of glycine as a substitute for salt as a supporting solute for proteins, and we show that it has a minimal effect on probe tuning or performance. Readily available d5-Gly is a useful co-solute for protein NMR, especially at high magnetic field strengths and on cold probes, as it maintains solubility while not degrading probe performance.

PMID: 15780927 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR tweet] Live from the Nuclear Magnetic Resonance Room.....it's Saturday Morning....
Live from the Nuclear Magnetic Resonance Room.....it's Saturday Morning.... Published by JCPOMG (Le Petit Monstre) on 2011-02-19T16:00:22Z Source: Twitter
nmrlearner Twitter NMR 0 02-19-2011 04:01 PM
[NMR tweet] @Schnik Intel has an NMR. It took me a while to realize that meant nursing mothers' room, and nuclear magnetic resonance (imaging).
@Schnik Intel has an NMR. It took me a while to realize that meant nursing mothers' room, and nuclear magnetic resonance (imaging). Published by blogan (Brent Logan) on 2011-01-04T03:09:04Z Source: Twitter
nmrlearner Twitter NMR 0 01-04-2011 03:36 AM
[NMR paper] Sensitivity of NMR residual dipolar couplings to perturbations in folded and denature
Sensitivity of NMR residual dipolar couplings to perturbations in folded and denatured staphylococcal nuclease. Related Articles Sensitivity of NMR residual dipolar couplings to perturbations in folded and denatured staphylococcal nuclease. Biochemistry. 2005 May 3;44(17):6392-403 Authors: Sallum CO, Martel DM, Fournier RS, Matousek WM, Alexandrescu AT The invariance of NMR residual dipolar couplings (RDCs) in denatured forms of staphylococcal nuclease to changes in denaturant concentration or amino acid sequence has previously been attributed...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] High-sensitivity observation of dipolar exchange and NOEs between exchangeable proton
High-sensitivity observation of dipolar exchange and NOEs between exchangeable protons in proteins by 3D solid-state NMR spectroscopy. Related Articles High-sensitivity observation of dipolar exchange and NOEs between exchangeable protons in proteins by 3D solid-state NMR spectroscopy. J Am Chem Soc. 2003 Nov 26;125(47):14222-3 Authors: Paulson EK, Morcombe CR, Gaponenko V, Dancheck B, Byrd RA, Zilm KW A highly sensitive new 1H-detected 3D solid-state NMR method is described for characterizing 1H-1H spin exchange in nanocrystalline samples of...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] The importance of being ordered: improving NMR structures using residual dipolar coup
The importance of being ordered: improving NMR structures using residual dipolar couplings. Related Articles The importance of being ordered: improving NMR structures using residual dipolar couplings. C R Biol. 2002 Sep;325(9):957-66 Authors: Gronenborn AM Residual dipolar couplings arise from small degrees of alignment of molecules in a magnetic field. Most biomolecules lack sufficient intrinsic magnetic susceptibility anisotropies for practical purposes; however, alignment can be achieved using dilute aqueous phospholipid mixtures, colloidal...
nmrlearner Journal club 0 11-24-2010 08:58 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:55 PM.


Map