Related ArticlesImproving the accuracy of NMR structures of DNA by means of a database potential of mean force describing base-base positional interactions.
J Am Chem Soc. 2001 May 2;123(17):3903-18
Authors: Kuszewski J, Schwieters C, Clore GM
NMR structure determination of nucleic acids presents an intrinsically difficult problem since the density of short interproton distance contacts is relatively low and limited to adjacent base pairs. Although residual dipolar couplings provide orientational information that is clearly helpful, they do not provide translational information of either a short-range (with the exception of proton-proton dipolar couplings) or long-range nature. As a consequence, the description of the nonbonded contacts has a major impact on the structures of nucleic acids generated from NMR data. In this paper, we describe the derivation of a potential of mean force derived from all high-resolution (2 A or better) DNA crystal structures available in the Nucleic Acid Database (NDB) as of May 2000 that provides a statistical description, in simple geometric terms, of the relative positions of pairs of neighboring bases (both intra- and interstrand) in Cartesian space. The purpose of this pseudopotential, which we term a DELPHIC base-base positioning potential, is to bias sampling during simulated annealing refinement to physically reasonable regions of conformational space within the range of possibilities that are consistent with the experimental NMR restraints. We illustrate the application of the DELPHIC base-base positioning potential to the structure refinement of a DNA dodecamer, d(CGCGAATTCGCG)(2), for which NOE and dipolar coupling data have been measured in solution and for which crystal structures have been determined. We demonstrate by cross-validation against independent NMR observables (that is, both residual dipolar couplings and NOE-derived intereproton distance restraints) that the DELPHIC base-base positioning potential results in a significant increase in accuracy and obviates artifactual distortions in the structures arising from the limitations of conventional descriptions of the nonbonded contacts in terms of either Lennard-Jones van der Waals and electrostatic potentials or a simple van der Waals repulsion potential. We also demonstrate, using experimental NMR data for a complex of the male sex determining factor SRY with a duplex DNA 14mer, which includes a region of highly unusual and distorted DNA, that the DELPHIC base-base positioning potential does not in any way hinder unusual interactions and conformations from being satisfactorily sampled and reproduced. We expect that the methodology described in this paper for DNA can be equally applied to RNA, as well as side chain-side chain interactions in proteins and protein-protein complexes, and side chain-nucleic acid interactions in protein-nucleic acid complexes. Further, this approach should be useful not only for NMR structure determination but also for refinement of low-resolution (3-3.5 A) X-ray data.
[NMR paper] Assessing precision and accuracy of protein structures derived from NMR data.
Assessing precision and accuracy of protein structures derived from NMR data.
Related Articles Assessing precision and accuracy of protein structures derived from NMR data.
Proteins. 2005 Jun 1;59(4):655-61
Authors: Snyder DA, Bhattacharya A, Huang YJ, Montelione GT
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] Improving the accuracy of NMR structures of large proteins using pseudocontact shifts
Improving the accuracy of NMR structures of large proteins using pseudocontact shifts as long-range restraints.
Related Articles Improving the accuracy of NMR structures of large proteins using pseudocontact shifts as long-range restraints.
J Biomol NMR. 2004 Mar;28(3):205-12
Authors: Gaponenko V, Sarma SP, Altieri AS, Horita DA, Li J, Byrd RA
We demonstrate improved accuracy in protein structure determination for large (>/=30 kDa), deuterated proteins (e.g. STAT4(NT)) via the combination of pseudocontact shifts for amide and methyl protons...
nmrlearner
Journal club
0
11-24-2010 09:25 PM
[NMR paper] The importance of being ordered: improving NMR structures using residual dipolar coup
The importance of being ordered: improving NMR structures using residual dipolar couplings.
Related Articles The importance of being ordered: improving NMR structures using residual dipolar couplings.
C R Biol. 2002 Sep;325(9):957-66
Authors: Gronenborn AM
Residual dipolar couplings arise from small degrees of alignment of molecules in a magnetic field. Most biomolecules lack sufficient intrinsic magnetic susceptibility anisotropies for practical purposes; however, alignment can be achieved using dilute aqueous phospholipid mixtures, colloidal...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] Improving the quality of protein structures derived by NMR spectroscopy.
Improving the quality of protein structures derived by NMR spectroscopy.
Related Articles Improving the quality of protein structures derived by NMR spectroscopy.
J Biomol NMR. 2002 Mar;22(3):281-9
Authors: Spronk CA, Linge JP, Hilbers CW, Vuister GW
Biomolecular structures provide the basis for many studies in several research areas such as homology modelling, structure-based drug design and functional genomics. It is an important prerequisite that the structure is reliable in terms of accurate description of the experimental data, and in...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] Improving the quality of NMR and crystallographic protein structures by means of a co
Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases.
...
nmrlearner
Journal club
0
08-22-2010 02:27 PM
[NMR paper] An assessment of the precision and accuracy of protein structures determined by NMR.
An assessment of the precision and accuracy of protein structures determined by NMR. Dependence on distance errors.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles An assessment of the precision and accuracy of protein structures determined by NMR. Dependence on distance errors.
J Mol Biol. 1994 Jun 24;239(5):601-7
Authors: Zhao D, Jardetzky O
We tested the dependence of the accuracy and precision of calculated NMR structures on the errors of the distance constraints...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] An assessment of the precision and accuracy of protein structures determined by NMR.
An assessment of the precision and accuracy of protein structures determined by NMR. Dependence on distance errors.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles An assessment of the precision and accuracy of protein structures determined by NMR. Dependence on distance errors.
J Mol Biol. 1994 Jun 24;239(5):601-7
Authors: Zhao D, Jardetzky O
We tested the dependence of the accuracy and precision of calculated NMR structures on the errors of the distance constraints...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
Precision and Accuracy of NMR Structures - PSI
Precision and Accuracy of NMR Structures - a presentation by the Protein Structure Initiative - is available to read from here:
http://journals.iucr.org/services/nmr/precision.pdf
More information about the PSI can be found here:
http://www.structuralgenomics.org/