BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-19-2010, 08:32 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,804
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Improving the accuracy of NMR structures of DNA by means of a database potential of m

Improving the accuracy of NMR structures of DNA by means of a database potential of mean force describing base-base positional interactions.

Related Articles Improving the accuracy of NMR structures of DNA by means of a database potential of mean force describing base-base positional interactions.

J Am Chem Soc. 2001 May 2;123(17):3903-18

Authors: Kuszewski J, Schwieters C, Clore GM

NMR structure determination of nucleic acids presents an intrinsically difficult problem since the density of short interproton distance contacts is relatively low and limited to adjacent base pairs. Although residual dipolar couplings provide orientational information that is clearly helpful, they do not provide translational information of either a short-range (with the exception of proton-proton dipolar couplings) or long-range nature. As a consequence, the description of the nonbonded contacts has a major impact on the structures of nucleic acids generated from NMR data. In this paper, we describe the derivation of a potential of mean force derived from all high-resolution (2 A or better) DNA crystal structures available in the Nucleic Acid Database (NDB) as of May 2000 that provides a statistical description, in simple geometric terms, of the relative positions of pairs of neighboring bases (both intra- and interstrand) in Cartesian space. The purpose of this pseudopotential, which we term a DELPHIC base-base positioning potential, is to bias sampling during simulated annealing refinement to physically reasonable regions of conformational space within the range of possibilities that are consistent with the experimental NMR restraints. We illustrate the application of the DELPHIC base-base positioning potential to the structure refinement of a DNA dodecamer, d(CGCGAATTCGCG)(2), for which NOE and dipolar coupling data have been measured in solution and for which crystal structures have been determined. We demonstrate by cross-validation against independent NMR observables (that is, both residual dipolar couplings and NOE-derived intereproton distance restraints) that the DELPHIC base-base positioning potential results in a significant increase in accuracy and obviates artifactual distortions in the structures arising from the limitations of conventional descriptions of the nonbonded contacts in terms of either Lennard-Jones van der Waals and electrostatic potentials or a simple van der Waals repulsion potential. We also demonstrate, using experimental NMR data for a complex of the male sex determining factor SRY with a duplex DNA 14mer, which includes a region of highly unusual and distorted DNA, that the DELPHIC base-base positioning potential does not in any way hinder unusual interactions and conformations from being satisfactorily sampled and reproduced. We expect that the methodology described in this paper for DNA can be equally applied to RNA, as well as side chain-side chain interactions in proteins and protein-protein complexes, and side chain-nucleic acid interactions in protein-nucleic acid complexes. Further, this approach should be useful not only for NMR structure determination but also for refinement of low-resolution (3-3.5 A) X-ray data.

PMID: 11457140 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Assessing precision and accuracy of protein structures derived from NMR data.
Assessing precision and accuracy of protein structures derived from NMR data. Related Articles Assessing precision and accuracy of protein structures derived from NMR data. Proteins. 2005 Jun 1;59(4):655-61 Authors: Snyder DA, Bhattacharya A, Huang YJ, Montelione GT
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Improving the accuracy of NMR structures of large proteins using pseudocontact shifts
Improving the accuracy of NMR structures of large proteins using pseudocontact shifts as long-range restraints. Related Articles Improving the accuracy of NMR structures of large proteins using pseudocontact shifts as long-range restraints. J Biomol NMR. 2004 Mar;28(3):205-12 Authors: Gaponenko V, Sarma SP, Altieri AS, Horita DA, Li J, Byrd RA We demonstrate improved accuracy in protein structure determination for large (>/=30 kDa), deuterated proteins (e.g. STAT4(NT)) via the combination of pseudocontact shifts for amide and methyl protons...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] The importance of being ordered: improving NMR structures using residual dipolar coup
The importance of being ordered: improving NMR structures using residual dipolar couplings. Related Articles The importance of being ordered: improving NMR structures using residual dipolar couplings. C R Biol. 2002 Sep;325(9):957-66 Authors: Gronenborn AM Residual dipolar couplings arise from small degrees of alignment of molecules in a magnetic field. Most biomolecules lack sufficient intrinsic magnetic susceptibility anisotropies for practical purposes; however, alignment can be achieved using dilute aqueous phospholipid mixtures, colloidal...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Improving the quality of protein structures derived by NMR spectroscopy.
Improving the quality of protein structures derived by NMR spectroscopy. Related Articles Improving the quality of protein structures derived by NMR spectroscopy. J Biomol NMR. 2002 Mar;22(3):281-9 Authors: Spronk CA, Linge JP, Hilbers CW, Vuister GW Biomolecular structures provide the basis for many studies in several research areas such as homology modelling, structure-based drug design and functional genomics. It is an important prerequisite that the structure is reliable in terms of accurate description of the experimental data, and in...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Improving the quality of NMR and crystallographic protein structures by means of a co
Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases. ...
nmrlearner Journal club 0 08-22-2010 02:27 PM
[NMR paper] An assessment of the precision and accuracy of protein structures determined by NMR.
An assessment of the precision and accuracy of protein structures determined by NMR. Dependence on distance errors. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles An assessment of the precision and accuracy of protein structures determined by NMR. Dependence on distance errors. J Mol Biol. 1994 Jun 24;239(5):601-7 Authors: Zhao D, Jardetzky O We tested the dependence of the accuracy and precision of calculated NMR structures on the errors of the distance constraints...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] An assessment of the precision and accuracy of protein structures determined by NMR.
An assessment of the precision and accuracy of protein structures determined by NMR. Dependence on distance errors. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles An assessment of the precision and accuracy of protein structures determined by NMR. Dependence on distance errors. J Mol Biol. 1994 Jun 24;239(5):601-7 Authors: Zhao D, Jardetzky O We tested the dependence of the accuracy and precision of calculated NMR structures on the errors of the distance constraints...
nmrlearner Journal club 0 08-22-2010 03:33 AM
Precision and Accuracy of NMR Structures - PSI
Precision and Accuracy of NMR Structures - a presentation by the Protein Structure Initiative - is available to read from here: http://journals.iucr.org/services/nmr/precision.pdf More information about the PSI can be found here: http://www.structuralgenomics.org/
Rachel Educational web pages 0 09-10-2008 05:32 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:05 AM.


Map