BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-10-2025, 09:32 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,907
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Improvement in protein HSQC spectra from addition of betaine

Improvement in protein HSQC spectra from addition of betaine

Addition of glycine betaine up to 1 M gave rise to increased intensity for some weak signals in the HSQC spectra of barnase and Plasmodium falciparum flap endonuclease. The signals that were enhanced were low intensity signals, often from amide groups with rapid internal motion (low order parameter). The majority of signals are however somewhat weaker because of the increased viscosity. Addition of betaine is shown to cause a small but significant overall increase in order parameter, no consistent effect on conformational change on the µs-ms timescale, and a reduction in amide exchange rates, by a factor of about 3. The results are consistent with a model in which betaine leads to a reduction in fluctuations within the bulk water, which in turn produces a reduction in internal fluctuations of the protein.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] NMR spectra of PB2 627, the RNA-binding domain in influenza A virus RNA polymerase that contains the pathogenicity factor lysine 627, and improvement of the spectra by small osmolytes.
NMR spectra of PB2 627, the RNA-binding domain in influenza A virus RNA polymerase that contains the pathogenicity factor lysine 627, and improvement of the spectra by small osmolytes. Related Articles NMR spectra of PB2 627, the RNA-binding domain in influenza A virus RNA polymerase that contains the pathogenicity factor lysine 627, and improvement of the spectra by small osmolytes. Biochem Biophys Rep. 2017 Dec;12:129-134 Authors: Kato YS, Tanokura M, Kuzuhara T Abstract The influenza A virus, which has an RNA genome, requires...
nmrlearner Journal club 0 11-02-2017 10:26 AM
[U. of Ottawa NMR Facility Blog] Exchange Effects in HSQC Spectra
Exchange Effects in HSQC Spectra The effects of chemical or dynamic exchange on NMR spectra are very well known. Exchange is often studied by observing line shape changes as a function of temperature, by 2d EXSY, inversion transfer or saturation transfer methods. Effects due to exchange can also be observed in 1H - 13C HSQC spectra. The HSQC method works by transferring 1H magnetization to 13C magnetization via an INEPT transfer through the one-bond J coupling across the 1H - 13C chemical bond. The 13C magnetization evolves during the incremented delay, t1, of the 2D pulse sequence...
nmrlearner News from NMR blogs 0 01-12-2017 05:31 PM
[NMR paper] Unified and isomer-specific NMR metabolomics database for the accurate analysis of (13)C-(1)H HSQC spectra.
Unified and isomer-specific NMR metabolomics database for the accurate analysis of (13)C-(1)H HSQC spectra. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.ncbi.nlm.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Unified and isomer-specific NMR metabolomics database for the accurate analysis of (13)C-(1)H HSQC spectra. ACS Chem Biol. 2015 Feb 20;10(2):452-9 Authors: Bingol K, Li DW, Bruschweiler-Li...
nmrlearner Journal club 0 01-16-2016 05:20 PM
[U. of Ottawa NMR Facility Blog] Decoupling in 2D HSQC Spectra
Decoupling in 2D HSQC Spectra HMQC and HSQC NMR data are commonly used to correlate the chemical shifts of protons and 13C (or 15N) across one chemical bond via the J coupling interaction. The data are 1H detected, with the 1H chemical shift in the horizontal F2 domain and the 13C (or 15N) chemical shift in the vertical F1 domain. In the case of 1H and 13C, the technique depends on protons bonded to 13C. 1H–12C spin pairs provide no coupling information and are suppressed by the method. If one is to observe the 1H signal of a 1H-13C spin pair, one expects to observe a doublet with...
nmrlearner News from NMR blogs 0 05-07-2015 12:59 AM
Real-time pure shift 15 N HSQC of proteins: a real improvement in resolution and sensitivity
Real-time pure shift 15 N HSQC of proteins: a real improvement in resolution and sensitivity Abstract Spectral resolution in proton NMR spectroscopy is reduced by the splitting of resonances into multiplets due to the effect of homonuclear scalar couplings. Although these effects are often hidden in protein NMR spectroscopy by low digital resolution and routine apodization, behind the scenes homonuclear scalar couplings increase spectral overcrowding. The possibilities for biomolecular NMR offered by new pure shift NMR methods are illustrated here....
nmrlearner Journal club 0 03-04-2015 08:56 AM
[NMR paper] NMR profiling of biomolecules at natural abundance using 2D (1)H-(15)N and (1)H-(13)C multiplicity-separated (MS) HSQC spectra.
NMR profiling of biomolecules at natural abundance using 2D (1)H-(15)N and (1)H-(13)C multiplicity-separated (MS) HSQC spectra. NMR profiling of biomolecules at natural abundance using 2D (1)H-(15)N and (1)H-(13)C multiplicity-separated (MS) HSQC spectra. J Magn Reson. 2014 Dec 4;251C:65-70 Authors: Chen K, Freedberg DI, Keire DA Abstract 2D NMR (1)H-X (X=(15)N or (13)C) HSQC spectra contain cross-peaks for all XHn moieties. Multiplicity-edited(1)H-(13)C HSQC pulse sequences generate opposite signs between peaks of CH2 and...
nmrlearner Journal club 0 01-07-2015 11:26 AM
[NMR paper] NMR profiling of biomolecules at natural abundance using 2D 1H-15N and 1H-13C multiplicity-separated (MS) HSQC spectra
NMR profiling of biomolecules at natural abundance using 2D 1H-15N and 1H-13C multiplicity-separated (MS) HSQC spectra Publication date: Available online 4 December 2014 Source:Journal of Magnetic Resonance</br> Author(s): Kang Chen , Darón I. Freedberg , David A. Keire</br> 2D NMR 1H-X (X=15N or 13C) HSQC spectra contain cross-peaks for all XHn moieties. Multiplicity-edited 1H-13C HSQC pulse sequences generate opposite signs between peaks of CH2 and CH/CH3 at a cost of lower signal-to-noise due to the 13C T2 relaxation during an additional 1/1 J CH period. Such...
nmrlearner Journal club 0 12-08-2014 01:05 PM
[NMR paper] Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC
Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC experiments. Related Articles Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC experiments. J Am Chem Soc. 2002 Oct 16;124(41):12352-60 Authors: Skrynnikov NR, Dahlquist FW, Kay LE Carr-Purcell-Meiboom-Gill (CPMG) relaxation measurements employing trains of 180 degrees pulses with variable pulse spacing provide valuable information about systems undergoing millisecond-time-scale chemical exchange. Fits of the CPMG relaxation...
nmrlearner Journal club 0 11-24-2010 08:58 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:54 AM.


Map