BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-24-2010, 09:25 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,780
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Improvement of hydrogen bond geometry in protein NMR structures by residual dipolar c

Improvement of hydrogen bond geometry in protein NMR structures by residual dipolar couplings--an assessment of the interrelation of NMR restraints.

Related Articles Improvement of hydrogen bond geometry in protein NMR structures by residual dipolar couplings--an assessment of the interrelation of NMR restraints.

J Biomol NMR. 2004 Jan;28(1):31-41

Authors: Jensen PR, Axelsen JB, Lerche MH, Poulsen FM

We have examined how the hydrogen bond geometry in three different proteins is affected when structural restraints based on measurements of residual dipolar couplings are included in the structure calculations. The study shows, that including restraints based solely on (1)H(N)-(15)N residual dipolar couplings has pronounced impact on the backbone rmsd and Ramachandran plot but does not improve the hydrogen bond geometry. In the case of chymotrypsin inhibitor 2 the addition of (13)CO-(13)C(alpha) and (15)N-(13)CO one bond dipolar couplings as restraints in the structure calculations improved the hydrogen bond geometry to a quality comparable to that obtained in the 1.8 A resolution X-ray structure of this protein. A systematic restraint study was performed, in which four types of restraints, residual dipolar couplings, hydrogen bonds, TALOS angles and NOEs, were allowed in two states. This study revealed the importance of using several types of residual dipolar couplings to get good hydrogen bond geometry. The study also showed that using a small set of NOEs derived only from the amide protons, together with a full set of residual dipolar couplings resulted in structures of very high quality. When reducing the NOE set, it is mainly the side-chain to side-chain NOEs that are removed. Despite of this the effect on the side-chain packing is very small when a reduced NOE set is used, which implies that the over all fold of a protein structure is mainly determined by correct folding of the backbone.

PMID: 14739637 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar Cαâ??Câ?²/HNâ??N cross-correlated relaxation
How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar Cαâ??Câ?²/HNâ??N cross-correlated relaxation Abstract Highly precise and accurate measurements of very small NMR cross-correlated relaxation rates, namely those between protein HiNâ??Ni and Ciâ??1αâ??Ciâ??1â?² dipoles, are demonstrated with an error of 0.03 sâ??1 for GB3. Because the projection angles between the two dipole vectors are very close to the magic angle the rates range only from â??0.2 to +0.2 sâ??1. Small changes of the average vector orientations have a dramatic impact on the relative values....
nmrlearner Journal club 0 06-06-2011 12:53 AM
Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings.
Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings. Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings. J Am Chem Soc. 2011 Apr 5; Authors: Sgourakis NG, Lange OF, Dimaio F, Andre? I, Fitzkee NC, Rossi P, Montelione GT, Bax A, Baker D Symmetric protein dimers, trimers, and higher-order cyclic oligomers play key roles in many biological processes. However, structural studies of oligomeric systems by solution NMR...
nmrlearner Journal club 0 04-07-2011 09:54 PM
Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings
Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings Nikolaos G. Sgourakis, Oliver F. Lange, Frank DiMaio, Ingemar Andre?, Nicholas C. Fitzkee, Paolo Rossi, Gaetano T. Montelione, Ad Bax and David Baker http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja111318m/aop/images/medium/ja-2010-11318m_0008.gif Journal of the American Chemical Society DOI: 10.1021/ja111318m http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 04-06-2011 10:54 AM
[NMR paper] Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data.
Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data. Related Articles Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data. Proteins. 2005 Aug 15;60(3):367-81 Authors: van Dijk AD, Fushman D, Bonvin AM When classical, Nuclear Overhauser Effect (NOE)-based approaches fail, it is possible, given high-resolution...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] The importance of being ordered: improving NMR structures using residual dipolar coup
The importance of being ordered: improving NMR structures using residual dipolar couplings. Related Articles The importance of being ordered: improving NMR structures using residual dipolar couplings. C R Biol. 2002 Sep;325(9):957-66 Authors: Gronenborn AM Residual dipolar couplings arise from small degrees of alignment of molecules in a magnetic field. Most biomolecules lack sufficient intrinsic magnetic susceptibility anisotropies for practical purposes; however, alignment can be achieved using dilute aqueous phospholipid mixtures, colloidal...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Detecting protein kinase recognition modes of calmodulin by residual dipolar coupling
Detecting protein kinase recognition modes of calmodulin by residual dipolar couplings in solution NMR. Related Articles Detecting protein kinase recognition modes of calmodulin by residual dipolar couplings in solution NMR. Biochemistry. 2002 Oct 29;41(43):12899-906 Authors: Mal TK, Skrynnikov NR, Yap KL, Kay LE, Ikura M Calmodulin-regulated serine/threonine kinases (CaM kinases) play crucial roles in Ca2+-dependent signaling transduction pathways in eukaryotes. Despite having a similar overall molecular architecture of catalytic and...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Temperature-dependence of protein hydrogen bond properties as studied by high-resolut
Temperature-dependence of protein hydrogen bond properties as studied by high-resolution NMR. Related Articles Temperature-dependence of protein hydrogen bond properties as studied by high-resolution NMR. J Mol Biol. 2002 Apr 12;317(5):739-52 Authors: Cordier F, Grzesiek S The temperature-dependence of a large number of NMR parameters describing hydrogen bond properties in the protein ubiquitin was followed over a range from 5 to 65 degrees C. The parameters comprise hydrogen bond (H-bond) scalar couplings, h3JNC', chemical shifts, amide...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Protein structural motif recognition via NMR residual dipolar couplings.
Protein structural motif recognition via NMR residual dipolar couplings. Related Articles Protein structural motif recognition via NMR residual dipolar couplings. J Am Chem Soc. 2001 Feb 14;123(6):1222-9 Authors: Andrec M, Du P, Levy RM NMR residual dipolar couplings have great potential to provide rapid structural information for proteins in the solution state. This information even at low resolution may be used to advantage in proteomics projects that seek to annotate large numbers of gene products for entire genomes. In this paper, we...
nmrlearner Journal club 0 11-19-2010 08:32 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:15 AM.


Map