Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints.
Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints.
Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints.
J Am Chem Soc. 2011 Apr 4;
Authors: Ryabov Y, Schwieters CD, Clore GM
(15)N R(2)/R(1) relaxation data contain information on molecular shape and size as well as on bond vector orientations relative to the diffusion tensor. Since the diffusion tensor can be directly calculated from the molecular coordinates, direct inclusion of (15)N R(2)/R(1) restraints in NMR structure calculations without any a priori assumptions is possible. Here we show that (15)N R(2)/R(1) restraints are particularly valuable when only sparse distance restraints are available. Using three examples of proteins of varying size, namely, GB3 (56 residues), ubiquitin (76 residues), and the N-terminal domain of enzyme I (EIN, 249 residues), we show that incorporation of (15)N R(2)/R(1) restraints results in large and significant increases in coordinate accuracy that can make the difference between being able or unable to determine an approximate global fold. For GB3 and ubiquitin, good coordinate accuracy was obtained using only backbone hydrogen-bond restraints supplemented by (15)N R(2)/R(1) relaxation restraints. For EIN, the global fold could be determined using sparse nuclear Overhauser enhancement (NOE) distance restraints involving only NH and methyl groups in conjunction with (15)N R(2)/R(1) restraints. These results are of practical significance in the study of larger and more complex systems, where the increasing spectral complexity and number of chemical shift degeneracies reduce the number of unambiguous NOE asssignments that can be readily obtained, resulting in progressively reduced NOE coverage as the size of the protein increases.
PMID: 21462982 [PubMed - as supplied by publisher]
[Question from NMRWiki Q&A forum] Generate inter-proton distance restraints from an X-ray structure
Generate inter-proton distance restraints from an X-ray structure
Hello,
Does anyone know of any program that can generate inter-proton distance restraints from an X-ray structure?I was able to use Molmol to generate dihedral angles. MolMol can also generate inter-atom distances, however, I could not figure out how to just generate 1H-1H distances. I have a total of 50,000 inter-atom distance (H-H, C-O, C-N...all types).
Any help is highly appreciated.
Winston
nmrlearner
News from other NMR forums
0
04-25-2011 03:43 AM
Impact of 15N R2/R1 Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints
Impact of 15N R2/R1 Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints
Yaroslav Ryabov, Charles D. Schwieters and G. Marius Clore
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja201020c/aop/images/medium/ja-2011-01020c_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja201020c
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/3J1IyCLkQMQ
nmrlearner
Journal club
0
04-05-2011 10:37 AM
Structure Calculation from Unambiguous Long-Range Amide and Methyl (1)H-(1)H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy.
Structure Calculation from Unambiguous Long-Range Amide and Methyl (1)H-(1)H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy.
Structure Calculation from Unambiguous Long-Range Amide and Methyl (1)H-(1)H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy.
J Am Chem Soc. 2011 Mar 24;
Authors: Linser R, Bardiaux B, Higman V, Fink U, Reif B
Magic-angle spinning (MAS) solid-state NMR becomes an increasingly important tool for the determination of structures of membrane...
nmrlearner
Journal club
0
03-26-2011 07:00 PM
Structure Calculation from Unambiguous Long-Range Amide and Methyl 1H-1H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy
Structure Calculation from Unambiguous Long-Range Amide and Methyl 1H-1H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy
Rasmus Linser, Benjamin Bardiaux, Victoria Higman, Uwe Fink and Bernd Reif
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja110222h/aop/images/medium/ja-2010-10222h_0004.gif
Journal of the American Chemical Society
DOI: 10.1021/ja110222h
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/Dh0EBf8PwcY
nmrlearner
Journal club
0
03-24-2011 08:02 PM
[NMR paper] Application of sparse NMR restraints to large-scale protein structure prediction.
Application of sparse NMR restraints to large-scale protein structure prediction.
Related Articles Application of sparse NMR restraints to large-scale protein structure prediction.
Biophys J. 2004 Aug;87(2):1241-8
Authors: Li W, Zhang Y, Skolnick J
The protein structure prediction algorithm TOUCHSTONEX that uses sparse distance restraints derived from NMR nuclear Overhauser enhancement (NOE) data to predict protein structures at low-to-medium resolution was evaluated as follows: First, a representative benchmark set of the Protein Data Bank...
nmrlearner
Journal club
0
11-24-2010 10:01 PM
[NMR paper] Automated NOESY interpretation with ambiguous distance restraints: the refined NMR so
Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin.
J Mol Biol. 1997 Jun 13;269(3):408-22
Authors: Nilges M, Macias MJ, O'Donoghue SI, Oschkinat H
We have used a...
nmrlearner
Journal club
0
08-22-2010 03:31 PM
[NMR paper] Automated NOESY interpretation with ambiguous distance restraints: the refined NMR so
Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin.
J Mol Biol. 1997 Jun 13;269(3):408-22
Authors: Nilges M, Macias MJ, O'Donoghue SI, Oschkinat H
We have used a...
nmrlearner
Journal club
0
08-22-2010 03:03 PM
Distance restraints for structure determination
Distance restraints for structure determination
Experimentally derived parameters for protein structure determination, Part 1: nOe distance restraints. Lecture by Dr. Matthew Cordes from University of Arizona.
More...