BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-25-2023, 02:40 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Illuminating GPCR signaling mechanisms by NMR spectroscopy with stable-isotope labeled receptors

Illuminating GPCR signaling mechanisms by NMR spectroscopy with stable-isotope labeled receptors

G protein-coupled receptors (GPCRs) exhibit remarkable structural plasticity, which underlies their capacity to recognize a wide range of extracellular molecules and interact with intracellular partner proteins. Nuclear magnetic resonance (NMR) spectroscopy is uniquely well-suited to investigate GPCR structural plasticity, enabled by stable-isotope "probes" incorporated into receptors that inform on structure and dynamics. Progress with stable-isotope labeling methods in Eukaryotic expression...

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] The transient expression of recombinant proteins in plant cell packs facilitates stable isotope labeling for NMR spectroscopy
The transient expression of recombinant proteins in plant cell packs facilitates stable isotope labeling for NMR spectroscopy Nuclear magnetic resonance (NMR) spectroscopy can be used to determine the structure, dynamics and interactions of proteins. However, protein NMR requires stable isotope labeling for signal detection. The cells used for the production of recombinant proteins must therefore be grown in medium containing isotopically labeled substrates. Stable isotope labeling is well established in Escherichia coli, but bacteria are only suitable for the production of simple proteins...
nmrlearner Journal club 0 06-17-2022 08:24 AM
[NMR paper] G Protein-coupled Receptor (GPCR) Reconstitution and Labeling for Solution Nuclear Magnetic Resonance (NMR) Studies of the Structural Basis of Transmembrane Signaling
G Protein-coupled Receptor (GPCR) Reconstitution and Labeling for Solution Nuclear Magnetic Resonance (NMR) Studies of the Structural Basis of Transmembrane Signaling G protein-coupled receptors (GPCRs) are a large membrane protein family found in higher organisms, including the human body. GPCRs mediate cellular responses to diverse extracellular stimuli and thus control key physiological functions, which makes them important targets for drug design. Signaling by GPCRs is related to the structure and dynamics of these proteins, which are modulated by extrinsic ligands as well as by...
nmrlearner Journal club 0 05-15-2022 06:54 AM
[NMR paper] Signaling-Related Mobility Changes in Bacterial Chemotaxis Receptors Revealed by Solid-State NMR.
Signaling-Related Mobility Changes in Bacterial Chemotaxis Receptors Revealed by Solid-State NMR. Signaling-Related Mobility Changes in Bacterial Chemotaxis Receptors Revealed by Solid-State NMR. J Phys Chem B. 2017 Aug 17;: Authors: Kashefi M, Thompson LK Abstract Bacteria employ remarkable membrane-bound nanoarrays to sense their environment and direct their swimming. Arrays consist of chemotaxis receptor trimers of dimers that are bridged at their membrane-distal tips by rings of two cytoplasmic proteins, a kinase CheA and a...
nmrlearner Journal club 0 08-18-2017 04:59 PM
Stable isotope labeling methods for DNA
Stable isotope labeling methods for DNA Publication date: Available online 20 June 2016 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): Frank H.T. Nelissen, Marco Tessari, Sybren S. Wijmenga, Hans A. Heus</br> NMR is a powerful method for studying proteins and nucleic acids in solution. The study of nucleic acids by NMR is far more challenging than for proteins, which is mainly due to the limited number of building blocks and unfavorable spectral properties. For NMR studies of DNA molecules, (site specific) isotope enrichment is...
nmrlearner Journal club 0 06-21-2016 01:09 AM
[NMR paper] Differentially Isotope-Labeled Nucleosomes to Study Asymmetric Histone Modification Crosstalk by Time-Resolved NMR Spectroscopy.
Differentially Isotope-Labeled Nucleosomes to Study Asymmetric Histone Modification Crosstalk by Time-Resolved NMR Spectroscopy. Related Articles Differentially Isotope-Labeled Nucleosomes to Study Asymmetric Histone Modification Crosstalk by Time-Resolved NMR Spectroscopy. Angew Chem Int Ed Engl. 2016 May 24; Authors: Liokatis S, Klingberg R, Tan S, Schwarzer D Abstract Post-translational modifications (PTMs) of histones regulate chromatin structure and function. Because nucleosomes contain two copies each of the four core...
nmrlearner Journal club 0 05-25-2016 02:33 PM
Dynamics and interactions of glycoconjugates probed by stable-isotope-assisted NMR spectroscopy.
Dynamics and interactions of glycoconjugates probed by stable-isotope-assisted NMR spectroscopy. Dynamics and interactions of glycoconjugates probed by stable-isotope-assisted NMR spectroscopy. Methods Enzymol. 2010;478:305-22 Authors: Yamaguchi Y, Kato K Unique advantages offered by nuclear magnetic resonance (NMR) spectroscopy provide high-resolution information not only on structures but also on dynamics and interactions of glycoconjugates in solution. These benefits are further enhanced by applying stable-isotope-labeling techniques, which we...
nmrlearner Journal club 0 12-31-2010 07:03 PM
An economical method for producing stable-isotope labeled proteins by the E. coli cel
An economical method for producing stable-isotope labeled proteins by the E. coli cell-free system Abstract Improvement of the cell-free protein synthesis system (CF) over the past decade have made it one of the most powerful protein production methods. The CF approach is especially useful for stable-isotope (SI) labeling of proteins for NMR analysis. However, it is less popular than expected, partly because the SI-labeled amino acids used for SI labeling by the CF are too expensive. In the present study, we developed a simple and inexpensive method for producing an SI-labeled protein...
nmrlearner Proteins 0 11-07-2010 02:47 PM
Stable-isotope-assisted NMR approaches to glycoproteins using immunoglobulin G as a m
Stable-isotope-assisted NMR approaches to glycoproteins using immunoglobulin G as a model system. Related Articles Stable-isotope-assisted NMR approaches to glycoproteins using immunoglobulin G as a model system. Prog Nucl Magn Reson Spectrosc. 2010 May;56(4):346-59 Authors: Kato K, Yamaguchi Y, Arata Y
nmrlearner Journal club 0 10-19-2010 04:51 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:06 AM.


Map