Related ArticlesIdentification of a novel glycosaminoglycan core-like molecule. I. 500 MHz 1H NMR analysis using a nano-NMR probe indicates the presence of a terminal alpha-GalNAc residue capping 4-methylumbelliferyl-beta-D-xylosides.
beta-Xylosides compete with endogenous proteoglycan core proteins and act as alternate acceptors for synthesizing protein-free glycosaminoglycan chains. Their assembly on these alternate acceptors utilizes the same glycosyltransferases that make the protein-bound chains. Most studies using alternate acceptors focus on the production of sulfated glycosaminoglycan chains that are thought to be the major products. However, we previously showed that labeling melanoma cells with [6-3H]galactose in the presence of 4-methylumbelliferyl (MU) or p-nitrophenyl (pNP) beta-xylosides led to the synthesis of mostly di- to tetrasaccharide products including incomplete core structures. We have solved the structure of one of the previously unidentified products as, GalNAc alpha(1,4)GlcA beta(1,3)Gal beta(1,3)Gal beta(1,4)Xyl beta MU, based on compositional analysis by high performance liquid chromatography, fast atom bombardment, electrospray mass spectrometry, and one-dimensional and two-dimensional 1H NMR spectroscopy. The novel aspect of this molecule is the presence of a terminal alpha-Gal-NAc residue at a position that is normally occupied by beta-GalNAc in chondroitin/dermatan sulfate or by alpha-Glc-NAc in heparin or heparan sulfate chains. An alpha-GalNAc residue at this critical location may prevent further chain extension or influence the type of chain subsequently added to the common tetrasaccharide core.
[NMR images] NMR Core - Protein NMR Data
http://medschool.umaryland.edu/uploadedImages/Medschool/Departments/Department_of_Biochemistry_and_Molecular_Biology/images/how.jpg
http://medschool.umaryland.edu/nmr/how.asp
20/12/2011 4:11:32 PM GMT
NMR Core - Protein NMR Data
More...
nmrlearner
NMR pictures
0
12-20-2011 04:09 PM
[CNS Yahoo group] How to add bond between protein residue and a small molecule in CNS
How to add bond between protein residue and a small molecule in CNS
Dear All, I'm stuck in a step where in i need to connect a bond an amino acid residue and a small molecule in CNS Thank you. Joseph
More...
nmrlearner
News from other NMR forums
0
08-07-2011 01:35 AM
Two-dimensional concurrent HMQC-COSY as an approach for small molecule chemical shift assignment and compound identification
Two-dimensional concurrent HMQC-COSY as an approach for small molecule chemical shift assignment and compound identification
Abstract Chemical shift assignment is the first step toward the structure elucidation of natural products and other chemical compounds. We propose here the use of 2D concurrent HMQC-COSY as an experiment for rapid chemical shift assignment of small molecules. This experiment provides well-dispersed 1Hâ??13C peak patterns that are distinctive for different functional groups plus 1Hâ??1H COSY connectivities that serve to identify adjacent groups. The COSY diagonal...
nmrlearner
Journal club
0
03-09-2011 04:19 AM
Installation of GROMACS 3.3.1 on Dell Inspiron 6400 with Fedora Core 6, Test 3, Dual Core processor
This is not really a "hard-core NMR topic" but it could be useful for people who try to complement dynamics data from NMR relaxation experiments with MD simulations.
I had really hard time trying to install the newer versions of Gromacs 3.3 and 3.3.1 on my laptop (Dell Inspiron 6400 Dual Core processor) . The laptop used to run Suse 10.1 that was recently replaced with Fedora Core 6 Test 3 (that finally supports Intel integrated mobile 945 video cards). With both OS, Gromacs 3.3.x could be installed, however, its sub-program "genion" failed (the program never ends while consuming 100%...
administrator
Molecular Dynamics programs
0
10-04-2006 11:50 AM
How do NMR tell the conformation of a molecule?
I'm looking at an NMR and its chemical shifts and J-coupling values and I need some help on using J-coupling to tell conformation. Anyone have some tips, pointers, anything?nemeczek, thankyou for your answer. I am aware of the karplus equation and finding the dihedral angle. I'm not entirely sure what to do with that information though. Can you give me a few pointers?Ensur, thankyou for trying to help. I know what my compound is supposed to be and I know the basics of reading NMR. I'm working on 1H NMR by the way. I need to know how the dihedral angle tells you the specific conformation...