BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-27-2016, 01:51 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,733
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Identification of Dynamic Modes in an Intrinsically Disordered Protein using Temperature-dependent NMR Relaxation.

Identification of Dynamic Modes in an Intrinsically Disordered Protein using Temperature-dependent NMR Relaxation.

Related Articles Identification of Dynamic Modes in an Intrinsically Disordered Protein using Temperature-dependent NMR Relaxation.

J Am Chem Soc. 2016 Apr 26;

Authors: Abyzov A, Salvi N, Schneider R, Maurin D, Ruigrok RW, Jensen MR, Blackledge M


Abstract
The dynamic modes and timescales sampled by intrinsically disordered proteins (IDPs) define their function. NMR spin relaxation is probably the most powerful tool to investigate these motions delivering site-specific descriptions of conformational fluctuations from throughout the molecule. Despite the abundance of experimental measurement of relaxation in IDPs, the physical origin of the measured relaxation rates remains poorly understood. Here we measure an extensive range of auto and cross-correlated spin relaxation rates at multiple magnetic field strengths on the C-terminal domain of the nucleoprotein of Sendai virus, over a large range of temperatures (268-298K), and combine these data to describe the dynamic behavior of this archetypal IDP. An Arrhenius-type relationship is used to simultaneously analyze up to 61 relaxation rates per amino acid over the entire temperature range, allowing the measurement of local activation energies along the chain, and the assignment of physically distinct dynamic modes. Fast (?
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Longitudinal relaxation properties of (1)H(N) and (1)H(?) determined by direct-detected (13)C NMR experiments to study intrinsically disordered proteins (IDPs).
Longitudinal relaxation properties of (1)H(N) and (1)H(?) determined by direct-detected (13)C NMR experiments to study intrinsically disordered proteins (IDPs). Longitudinal relaxation properties of (1)H(N) and (1)H(?) determined by direct-detected (13)C NMR experiments to study intrinsically disordered proteins (IDPs). J Magn Reson. 2015 Feb 12;254:19-26 Authors: Hošek T, Gil-Caballero S, Pierattelli R, Brutscher B, Felli IC Abstract Intrinsically disordered proteins (IDPs) are functional proteins containing large...
nmrlearner Journal club 0 03-17-2015 05:12 PM
[NMR paper] Urea Dependent 15N NMR-Relaxation Studies on PfP2 Multimers Reveal that the C-Terminal Behaves like an Independent Intrinsically Disordered Peptide.
Urea Dependent 15N NMR-Relaxation Studies on PfP2 Multimers Reveal that the C-Terminal Behaves like an Independent Intrinsically Disordered Peptide. Related Articles Urea Dependent 15N NMR-Relaxation Studies on PfP2 Multimers Reveal that the C-Terminal Behaves like an Independent Intrinsically Disordered Peptide. Protein Pept Lett. 2015 Mar 6; Authors: Hosur RV Abstract Intrinsically disordered proteins or such domains in globular proteins are believed to be playing important roles in protein functions by virtue of their ability...
nmrlearner Journal club 0 03-10-2015 07:22 PM
Longitudinal relaxation properties of 1HN and 1H? determined by direct-detected 13C NMR experiments to study intrinsically disordered proteins (IDPs)
Longitudinal relaxation properties of 1HN and 1H? determined by direct-detected 13C NMR experiments to study intrinsically disordered proteins (IDPs) Publication date: Available online 12 February 2015 Source:Journal of Magnetic Resonance</br> Author(s): Tomáš Hošek , Sergi Gil-Caballero , Roberta Pierattelli , Bernhard Brutscher , Isabella C. Felli</br> Intrinsically disordered proteins (IDPs) are functional proteins containing large fragments characterized by high local mobility. Bioinformatic studies have suggested that a significant fraction (more than 30%)...
nmrlearner Journal club 0 02-12-2015 07:48 PM
[NMR paper] Visualizing the molecular recognition trajectory of an intrinsically disordered protein using multinuclear relaxation dispersion NMR.
Visualizing the molecular recognition trajectory of an intrinsically disordered protein using multinuclear relaxation dispersion NMR. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Visualizing the molecular recognition trajectory of an intrinsically disordered protein using multinuclear relaxation dispersion NMR. J Am Chem Soc. 2014 Dec 31; Authors: Schneider R, Maurin D, Communie G, Kragelj J, Hansen DF, Ruigrok RW, Jensen MR, Blackledge M Abstract Despite playing...
nmrlearner Journal club 0 01-01-2015 11:00 PM
[NMR paper] Probing Local Backbone Geometries in Intrinsically Disordered Proteins by Cross-Correlated NMR Relaxation.
Probing Local Backbone Geometries in Intrinsically Disordered Proteins by Cross-Correlated NMR Relaxation. Probing Local Backbone Geometries in Intrinsically Disordered Proteins by Cross-Correlated NMR Relaxation. Angew Chem Int Ed Engl. 2013 Mar 20; Authors: Stanek J, Saxena S, Geist L, Konrat R, Ko?mi?ski W Abstract Ab ultra-high-resolution NMR experiment for the measurement of intraresidue (1) H(i)-(15) N(i)-(13) C'(i) dipolar-chemical shift anisotropy relaxation interference is employed to extract information about local backbone...
nmrlearner Journal club 0 03-23-2013 06:36 PM
[NMR paper] Fast hydrogen exchange affects (15)N relaxation measurements in intrinsically disordered proteins.
Fast hydrogen exchange affects (15)N relaxation measurements in intrinsically disordered proteins. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles Fast hydrogen exchange affects (15)N relaxation measurements in intrinsically disordered proteins. J Biomol NMR. 2013 Jan 12; Authors: Kim S, Wu KP, Baum J Abstract Unprotected amide protons can undergo fast hydrogen exchange (HX) with protons from the solvent. Generally, NMR experiments using the out-and-back...
nmrlearner Journal club 0 02-03-2013 10:22 AM
Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins
Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins Abstract We report enhanced sensitivity NMR measurements of intrinsically disordered proteins in the presence of paramagnetic relaxation enhancement (PRE) agents such as Ni2+-chelated DO2A. In proton-detected 1H-15N SOFAST-HMQC and carbon-detected (H-flip)13CO-15N experiments, faster longitudinal relaxation enables the usage of even shorter interscan delays. This results in higher NMR signal intensities per units of experimental time, without adverse line...
nmrlearner Journal club 0 10-21-2011 10:04 PM
Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH
Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH Abstract Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins. The quality of the secondary chemical shifts is dependent on an appropriate choice of random coil chemical shifts. We report random coil chemical shifts and sequence correction factors determined for a GGXGG peptide series following the approach of Schwarzinger et al. (J Am Chem Soc 123(13):2970â??2978, 2001). The chemical shifts are...
nmrlearner Journal club 0 01-17-2011 02:40 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:52 AM.


Map