BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-09-2019, 05:55 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach

Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach

Abstract

The insertase BamA is an essential protein of the bacterial outer membrane. Its 16-stranded transmembrane β-barrel contains a lateral gate as a key functional element. This gate is formed by the C-terminal half of the last β-strand. The BamA barrel was previously found to sample different conformations in aqueous solution, as well as different gate-open, gate-closed, and collapsed conformations in X-ray crystallography and cryo-electron microscopy structures. Here, we report the successful identification of conformation-selective nanobodies that stabilize BamA in specific conformations. While the initial candidate generation and selection protocol was based on established alpaca immunization and phage display selection procedures, the final selection of nanobodies was enhanced by a solution NMR-based screening step to shortlist the targets for crystallization. In this way, three crystal structures of BamAâ??nanobody complexes were efficiently obtained, showing two types of nanobodies that indeed stabilized BamA in two different conformations, i.e., with open and closed lateral gate, respectively. Then, by correlating the structural data with high resolution NMR spectra, we could for the first time assign the BamA conformational solution ensemble to defined structural states. The new nanobodies will be valuable tools towards understanding the client insertion mechanism of BamA and towards developing improved antibiotics.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
How to tackle protein structural data from solution and solid state: An integrated approach
How to tackle protein structural data from solution and solid state: An integrated approach Publication date: February 2016 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volumes 92–93</br> Author(s): Azzurra Carlon, Enrico Ravera, Witold Andra?oj?, Giacomo Parigi, Garib N. Murshudov, Claudio Luchinat</br> Long-range NMR restraints, such as diamagnetic residual dipolar couplings and paramagnetic data, can be used to determine 3D structures of macromolecules. They are also used to monitor, and potentially to improve, the accuracy of a...
nmrlearner Journal club 0 04-09-2016 03:54 AM
[NMR paper] Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy.
Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy. J Biomol NMR. 2015 Feb 1; Authors: Morgado L, Zeth K, Burmann BM, Maier T, Hiller S Abstract The insertase BamA is the central protein of the Bam complex responsible for...
nmrlearner Journal club 0 02-02-2015 09:55 PM
Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy
Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy Abstract The insertase BamA is the central protein of the Bam complex responsible for outer membrane protein biogenesis in Gram-negative bacteria. BamA features a 16-stranded transmembrane β-barrel and five periplasmic POTRA domains, with a total molecular weight of 88Â*kDa. Whereas the structure of BamA has recently been determined by X-ray crystallography, its functional mechanism is not well understood. This mechanism comprises the insertion of...
nmrlearner Journal club 0 02-01-2015 07:38 AM
[NMR paper] Insight into the conformational stability of membrane-embedded BamA using a combined solution and solid-state NMR approach.
Insight into the conformational stability of membrane-embedded BamA using a combined solution and solid-state NMR approach. Related Articles Insight into the conformational stability of membrane-embedded BamA using a combined solution and solid-state NMR approach. J Biomol NMR. 2015 Jan 8; Authors: Sinnige T, Houben K, Pritisanac I, Renault M, Boelens R, Baldus M Abstract The ?-barrel assembly machinery (BAM) is involved in folding and insertion of outer membrane proteins in Gram-negative bacteria, a process that is still poorly...
nmrlearner Journal club 0 01-09-2015 03:58 PM
Insight into the conformational stability of membrane-embedded BamA using a combined solution and solid-state NMR approach
Insight into the conformational stability of membrane-embedded BamA using a combined solution and solid-state NMR approach Abstract The β-barrel assembly machinery (BAM) is involved in folding and insertion of outer membrane proteins in Gram-negative bacteria, a process that is still poorly understood. With its 790 residues, BamA presents a challenge to current NMR methods. We utilized a â??divide and conquerâ?? approach in which we first obtained resonance assignments for BamAâ??s periplasmic POTRA domains 4 and 5 by solution NMR. Comparison of...
nmrlearner Journal club 0 01-08-2015 01:02 AM
[NMR paper] Present and future of NMR for RNA-protein complexes: A perspective of integrated structural biology.
Present and future of NMR for RNA-protein complexes: A perspective of integrated structural biology. Related Articles Present and future of NMR for RNA-protein complexes: A perspective of integrated structural biology. J Magn Reson. 2014 Apr;241:126-36 Authors: Carlomagno T Abstract Nucleic acids are gaining enormous importance as key molecules in almost all biological processes. Most nucleic acids do not act in isolation but are generally associated with proteins to form high-molecular-weight nucleoprotein complexes. In this perspective...
nmrlearner Journal club 0 03-25-2014 11:49 AM
Present and future of NMR for RNA–protein complexes: A perspective of integrated structural biology
Present and future of NMR for RNA–protein complexes: A perspective of integrated structural biology Publication date: April 2014 Source:Journal of Magnetic Resonance, Volume 241</br> Author(s): Teresa Carlomagno</br> Nucleic acids are gaining enormous importance as key molecules in almost all biological processes. Most nucleic acids do not act in isolation but are generally associated with proteins to form high-molecular-weight nucleoprotein complexes. In this perspective article I focus on the structural studies of supra-molecular ribonucleoprotein (RNP) assemblies...
nmrlearner Journal club 0 03-21-2014 12:52 AM
Rice University Researchers' New Integrated Approach Predicts Structural ... - BioNews Texas
<img alt="" height="1" width="1" /> Rice University Researchers' New Integrated Approach Predicts Structural ... BioNews Texas The most common methods for protein structural analysis currently are X-ray crystallography and nuclear magnetic resonance spectroscopy (NMR), however, these do not provide information about how proteins change their forms from native to functional ... Rice University Researchers' New Integrated Approach Predicts Structural ... - BioNews Texas More...
nmrlearner Online News 0 12-09-2013 03:29 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:57 PM.


Map