Related ArticlesIdentification of the Archaeoglobus fulgidus endonuclease III DNA interaction surface using heteronuclear NMR methods.
Structure. 1999 Aug 15;7(8):919-30
Authors: Shekhtman A, McNaughton L, Cunningham RP, Baxter SM
BACKGROUND: Endonuclease III is the prototype for a family of DNA-repair enzymes that recognize and remove damaged and mismatched bases from DNA via cleavage of the N-glycosidic bond. Crystal structures for endonuclease III, which removes damaged pyrimidines, and MutY, which removes mismatched adenines, show a highly conserved structure. Although there are several models for DNA binding by this family of enzymes, no experimental structures with bound DNA exist for any member of the family. RESULTS: Nuclear magnetic resonance (NMR) spectroscopy chemical-shift perturbation of backbone nuclei (1H, 15N, 13CO) has been used to map the DNA-binding site on Archaeoglobus fulgidus endonuclease III. The experimentally determined interaction surface includes five structural elements: the helix-hairpin-helix (HhH) motif, the iron-sulfur cluster loop (FCL) motif, the pseudo helix-hairpin-helix motif, the helix B-helix C loop, and helix H. The elements form a continuous surface that spans the active site of the enzyme. CONCLUSIONS: The enzyme-DNA interaction surface for endonuclease III contains five elements of the protein structure and suggests that DNA damage recognition may require several specific interactions between the enzyme and the DNA substrate. Because the target DNA used in this study contained a generic apurinic/apyrimidinic (AP) site, the binding interactions we observed for A. fulgidus endonuclease III should apply to all members of the endonuclease III family and several interactions could apply to the endonuclease III/AlkA (3-methyladenine DNA glycosylase) superfamily.
[NMR paper] NMR mapping of the HIV-1 Tat interaction surface of the KIX domain of the human coact
NMR mapping of the HIV-1 Tat interaction surface of the KIX domain of the human coactivator CBP.
Related Articles NMR mapping of the HIV-1 Tat interaction surface of the KIX domain of the human coactivator CBP.
Biochemistry. 2004 Feb 3;43(4):904-8
Authors: Vendel AC, Lumb KJ
Tat is required for the expression of the HIV-1 genome. HIV-1 Tat interacts with the human transcriptional coactivator and acetyltransferase CREB-binding protein (CBP) via the KIX domain of CBP. Chemical shift perturbation mapping with nuclear magnetic resonance...
nmrlearner
Journal club
0
11-24-2010 09:25 PM
[NMR paper] Identification of residues involved in the interaction of Staphylococcus aureus fibro
Identification of residues involved in the interaction of Staphylococcus aureus fibronectin-binding protein with the (4)F1(5)F1 module pair of human fibronectin using heteronuclear NMR spectroscopy.
Related Articles Identification of residues involved in the interaction of Staphylococcus aureus fibronectin-binding protein with the (4)F1(5)F1 module pair of human fibronectin using heteronuclear NMR spectroscopy.
Biochemistry. 2000 Mar 21;39(11):2887-93
Authors: Penkett CJ, Dobson CM, Smith LJ, Bright JR, Pickford AR, Campbell ID, Potts JR
Many...
nmrlearner
Journal club
0
11-18-2010 09:15 PM
[NMR paper] NMR study of Ni2+ binding to the H-N-H endonuclease domain of colicin E9.
NMR study of Ni2+ binding to the H-N-H endonuclease domain of colicin E9.
Related Articles NMR study of Ni2+ binding to the H-N-H endonuclease domain of colicin E9.
Protein Sci. 1999 Aug;8(8):1711-3
Authors: Hannan JP, Whittaker SB, Davy SL, Kühlmann UC, Pommer AJ, Hemmings AM, James R, Kleanthous C, Moore GR
Ni2+ affinity columns are widely used for protein purification, but they carry the risk that Ni2+ ions may bind to the protein, either adventitiously or at a physiologically important site. Dialysis against ethylenediaminetetraacetic acid...
nmrlearner
Journal club
0
11-18-2010 08:31 PM
[NMR paper] Identification of the DNA binding surface of H-NS protein from Escherichia coli by he
Identification of the DNA binding surface of H-NS protein from Escherichia coli by heteronuclear NMR spectroscopy.
Related Articles Identification of the DNA binding surface of H-NS protein from Escherichia coli by heteronuclear NMR spectroscopy.
FEBS Lett. 1999 Jul 16;455(1-2):63-9
Authors: Shindo H, Ohnuki A, Ginba H, Katoh E, Ueguchi C, Mizuno T, Yamazaki T
The DNA binding domain of H-NS protein was studied with various N-terminal deletion mutant proteins and identified by gel retardation assay and heteronuclear 2D- and 3D-NMR...
nmrlearner
Journal club
0
11-18-2010 08:31 PM
[NMR paper] Identification by NMR of the binding surface for the histidine-containing phosphocarr
Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system.
Biochemistry. 1997 Apr 15;36(15):4393-8
Authors: Garrett DS, Seok YJ,...
nmrlearner
Journal club
0
08-22-2010 03:31 PM
[NMR paper] Identification by NMR of the binding surface for the histidine-containing phosphocarr
Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system.
Biochemistry. 1997 Apr 15;36(15):4393-8
Authors: Garrett DS, Seok YJ,...
nmrlearner
Journal club
0
08-22-2010 03:03 PM
[NMR paper] The identification of cation-binding domains on the surface of microsomal cytochrome
The identification of cation-binding domains on the surface of microsomal cytochrome b5 using 1H-NMR paramagnetic difference spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles The identification of cation-binding domains on the surface of microsomal cytochrome b5 using 1H-NMR paramagnetic difference spectroscopy.
Eur J Biochem. 1992 Jan 15;203(1-2):211-23
Authors: Whitford D
One-dimensional and two-dimensional 1H-NMR...
nmrlearner
Journal club
0
08-21-2010 11:41 PM
[NMR paper] Identification of the single-stranded DNA binding surface of the transcriptional coac
Identification of the single-stranded DNA binding surface of the transcriptional coactivator PC4 by NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-standard-jbc_full_free.gif Related Articles Identification of the single-stranded DNA binding surface of the transcriptional coactivator PC4 by NMR.
J Biol Chem. 1999 Feb 5;274(6):3693-9
Authors: Werten S, Wechselberger R, Boelens R, van der Vliet PC, Kaptein R
The C-terminal domain of the eukaryotic transcriptional cofactor PC4...