Abstract Perdeuteration, selective deuteration, and stereo array isotope labeling (SAIL) are valuable strategies for NMR studies of larger proteins and membrane proteins. To minimize scrambling of the label, it is best to use cell-free methods to prepare selectively labeled proteins. However, when proteins are prepared from deuterated amino acids by cell-free translation in H2O, exchange reactions can lead to contamination of 2H sites by 1H from the solvent. Examination of a sample of SAIL-chlorella ubiquitin prepared by Escherichia coli cell-free synthesis revealed that exchange had occurred at several residues (mainly at Gly, Ala, Asp, Asn, Glu, and Gln). We present results from a study aimed at identifying the exchanging sites and level of exchange and at testing a strategy for minimizing 1H contamination during wheat germ cell-free translation of proteins produced from deuterated amino acids by adding known inhibitors of transaminases (1 mM aminooxyacetic acid) and glutamate synthetase (0.1 mM l-methionine sulfoximine). By using a wheat germ cell-free expression system, we produced [Uâ??2H, 15N]-chlorella ubiquitin without and with added inhibitors, and [Uâ??15N]-chlorella ubiquitin as a reference to determine the extent of deuterium incorporation. We also prepared a sample of [Uâ??13C, 15N]-chlorella ubiquitin, for use in assigning the sites of exchange. The added inhibitors did not reduce the protein yield and were successful in blocking hydrogen exchange at Cα sites, with the exception of Gly, and at Cβ sites of Ala. We discovered, in addition, that partial exchange occurred with or without the inhibitors at certain side-chain methyl and methylene groups: Asnâ??Hβ, Aspâ??Hβ, Glnâ??Hγ, Gluâ??Hγ, and Lysâ??Hε. The side-chain labeling pattern, in particular the mixed chiral labeling resulting from partial exchange at certain sites, should be of interest in studies of large proteins, protein complexes, and membrane proteins.
Content Type Journal Article
Category Article
Pages 1-10
DOI 10.1007/s10858-011-9575-4
Authors
Marco Tonelli, National Magnetic Resonance Facility at Madison (NMRFAM), Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1549, USA
Kiran K. Singarapu, National Magnetic Resonance Facility at Madison (NMRFAM), Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1549, USA
Shin-ichi Makino, Center for Eukaryotic Structural Genomics (CESG), Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1549, USA
Sarata C. Sahu, Center for Eukaryotic Structural Genomics (CESG), Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1549, USA
Yuko Matsubara, Center for Eukaryotic Structural Genomics (CESG), Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1549, USA
Yaeta Endo, Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, 790-8577 Japan
Masatsune Kainosho, Center for Priority Areas, Tokyo Metropolitan University, Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
John L. Markley, National Magnetic Resonance Facility at Madison (NMRFAM), Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1549, USA
An efficient protocol for incorporation of an unnatural amino acid in perdeuterated recombinant proteins using glucose-based media
An efficient protocol for incorporation of an unnatural amino acid in perdeuterated recombinant proteins using glucose-based media
Abstract The in vivo incorporation of unnatural amino acids into proteins is a well-established technique requiring an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is incorporated at a position encoded by a TAG amber codon. Although this technology provides unique opportunities to engineer protein structures, poor protein yields are usually obtained in deuterated media, hampering its application in the protein NMR...
Elucidating metabolic pathways for amino acid incorporation into dragline spider silk using 13C enrichment and solid state NMR.
Elucidating metabolic pathways for amino acid incorporation into dragline spider silk using 13C enrichment and solid state NMR.
Elucidating metabolic pathways for amino acid incorporation into dragline spider silk using 13C enrichment and solid state NMR.
Comp Biochem Physiol A Mol Integr Physiol. 2011 Jul;159(3):219-24
Authors: Creager MS, Izdebski T, Brooks AE, Lewis RV
Abstract
Spider silk has been evolutionarily optimized for contextual mechanical performance over the last 400 Ma. Despite precisely balanced mechanical properties,...
nmrlearner
Journal club
0
09-02-2011 05:40 PM
[Question from NMRWiki Q&A forum] 13C cuaternary centers in amino acids
13C cuaternary centers in amino acids
I've got a sample of about 5mg of an amino acid that is the final product of a a synthesis. Due to the long relaxation time that the carboxilic and the alpha C we only got a 200 varian Mercury instrument and we're unable to obtain those signals. I was wondering if an APT is better than DEPT, because we're only interested in this signals and i've heart the overall pulse sequence is shorter than the DEPT, increasing the number of scans in the same period of time
Check if somebody has answered this question on NMRWiki QA forum
nmrlearner
News from other NMR forums
0
08-31-2011 07:12 PM
Suppression of isotope scrambling in cell-free protein synthesis by broadband inhibition of PLP enymes for selective 15N-labelling and production of perdeuterated proteins in H2O
Suppression of isotope scrambling in cell-free protein synthesis by broadband inhibition of PLP enymes for selective 15N-labelling and production of perdeuterated proteins in H2O
Abstract Selectively isotope labelled protein samples can be prepared in vivo or in vitro from selectively labelled amino acids but, in many cases, metabolic conversions between different amino acids result in isotope scrambling. The best results are obtained by cell-free protein synthesis, where metabolic enzymes are generally less active, but isotope scrambling can never be suppressed completely. We show that...
nmrlearner
Journal club
0
02-16-2011 09:34 PM
[KPWU blog] Names of Atoms of Amino acids
Names of Atoms of Amino acids
I really hate the inconsistent nomenclature of atoms of amino acids between different programs/database. I finished all NOESY assignment on Sparky using PDB nomenclature and the Sparky XPLOR constraint plugin (shortcut xf) doesn’t take care of the differences between XPLOR and PDB. Thus I have to find a table showing me the differences of names http://stats.wordpress.com/b.gif?host=kpwu.wordpress.com&blog=76132&post=262&subd=kpwu&ref=&feed=1
Go to KPWU blog to read complete post.
nmrlearner
News from NMR blogs
0
01-28-2011 04:52 AM
[NMR paper] An AMBER/DYANA/MOLMOL phosphorylated amino acid library set and incorporation into NMR structure calculations.
An AMBER/DYANA/MOLMOL phosphorylated amino acid library set and incorporation into NMR structure calculations.
Related Articles An AMBER/DYANA/MOLMOL phosphorylated amino acid library set and incorporation into NMR structure calculations.
J Biomol NMR. 2005 Sep;33(1):15-24
Authors: Craft JW, Legge GB
Protein structure determination using Nuclear Magnetic Resonance (NMR) requires the use of molecular dynamics programs that incorporate both NMR experimental and implicit atomic data. Atomic parameters for each amino acid type are encoded in...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for
Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis.
Related Articles Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis.
J Biomol NMR. 1995 Sep;6(2):129-34
Authors: Kigawa T, Muto Y, Yokoyama S
For the application of multidimensional NMR spectroscopy to larger proteins, it would be useful to perform selective labeling of one of the 20 amino acids. For some amino acids, however, amino acid metabolism drastically reduces the efficiency and selectivity...