Related ArticlesHydrogen bond strength in membrane proteins probed by time-resolved (1)H-detected solid-state NMR and MD simulations.
Solid State Nucl Magn Reson. 2017 Mar 18;:
Authors: Medeiros-Silva J, Jekhmane S, Baldus M, Weingarth M
Abstract
(1)H-detected solid-state NMR in combination with (1)H/(2)D exchange steps allows for the direct identification of very strong hydrogen bonds in membrane proteins. On the example of the membrane-embedded potassium channel KcsA, we quantify the longevity of such very strong hydrogen bonds by combining time-resolved (1)H-detected solid-state NMR experiments and molecular dynamics simulations. In particular, we show that the carboxyl-side chain of the highly conserved residue Glu51 is involved in ultra-strong hydrogen bonds, which are fully-water-exposed and yet stable for weeks. The astonishing stability of these hydrogen bonds is important for the structural integrity of potassium channels, which we further corroborate by computational studies.
PMID: 28342732 [PubMed - as supplied by publisher]
Hydrogen bond strength in membrane proteins by time-resolved 1H-detected solid-state NMR and MD simulations
Hydrogen bond strength in membrane proteins by time-resolved 1H-detected solid-state NMR and MD simulations
Publication date: Available online 18 March 2017
Source:Solid State Nuclear Magnetic Resonance</br>
Author(s): Joćo Medeiros-Silva, Shehrazade Jekhmane, Marc Baldus, Markus Weingarth</br>
1H-detected solid-state NMR in combination with 1H/2D exchange steps allows for the direct identification of very strong hydrogen bonds in membrane proteins. On the example of the membrane-embedded potassium channel KcsA, we quantify the longevity of such very strong...
nmrlearner
Journal club
0
03-19-2017 07:03 AM
[NMR paper] (15)N and (1)H Solid-State NMR Investigation of a Canonical Low-Barrier Hydrogen-Bond Compound: 1,8-bis(dimethylamino) Naphthalene.
(15)N and (1)H Solid-State NMR Investigation of a Canonical Low-Barrier Hydrogen-Bond Compound: 1,8-bis(dimethylamino) Naphthalene.
(15)N and (1)H Solid-State NMR Investigation of a Canonical Low-Barrier Hydrogen-Bond Compound: 1,8-bis(dimethylamino) Naphthalene.
J Phys Chem B. 2015 Aug 5;
Authors: White PB, Hong M
Abstract
Strong or low-barrier hydrogen bonds have been often proposed in proteins to explain enzyme catalysis and proton transfer reactions. So far 1H chemical shifts and scalar couplings have been used as the main...
nmrlearner
Journal club
0
08-06-2015 10:24 AM
[NMR paper] Global fold of human cannabinoid type 2 receptor probed by solid-state (13) C-, (15) N-MAS NMR and molecular dynamics simulations.
Global fold of human cannabinoid type 2 receptor probed by solid-state (13) C-, (15) N-MAS NMR and molecular dynamics simulations.
Global fold of human cannabinoid type 2 receptor probed by solid-state (13) C-, (15) N-MAS NMR and molecular dynamics simulations.
Proteins. 2013 Sep 2;
Authors: Kimura T, Vukoti K, Lynch DL, Hurst DP, Grossfield A, Pitman MC, Reggio PH, Yeliseev AA, Gawrisch K
Abstract
The global fold of human cannabinoid type 2 (CB2 ) receptor in the agonist-bound active state in lipid bilayers was investigated by...
nmrlearner
Journal club
0
09-04-2013 12:28 PM
[NMR paper] Hydrogen bonding in Alzheimer's amyloid-? fibrils probed by 15N{17O} REAPDOR solid-state NMR spectroscopy.
Hydrogen bonding in Alzheimer's amyloid-? fibrils probed by 15N{17O} REAPDOR solid-state NMR spectroscopy.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Hydrogen bonding in Alzheimer's amyloid-? fibrils probed by 15N{17O} REAPDOR solid-state NMR spectroscopy.
Angew Chem Int Ed Engl. 2012 Oct 8;51(41):10289-92
Authors: Antzutkin ON, Iuga D, Filippov AV, Kelly RT, Becker-Baldus J, Brown SP, Dupree R
PMID: 22976560
nmrlearner
Journal club
0
02-16-2013 08:00 PM
[NMR paper] Protein-RNA Interfaces Probed by (1) H-Detected MAS Solid-State NMR Spectroscopy.
Protein-RNA Interfaces Probed by (1) H-Detected MAS Solid-State NMR Spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Protein-RNA Interfaces Probed by (1) H-Detected MAS Solid-State NMR Spectroscopy.
Angew Chem Int Ed Engl. 2013 Jan 18;
Authors: Asami S, Rakwalska-Bange M, Carlomagno T, Reif B
Abstract
Both protonated and deuterated samples were employed in the study of the L7Ae box C/D RNA complex by (1) H-detected...
nmrlearner
Journal club
0
02-03-2013 10:19 AM
Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy
Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy
Abstract Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the...
nmrlearner
Journal club
0
09-20-2012 06:06 AM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Angew Chem Int Ed Engl. 2011 Apr 20;
Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B
nmrlearner
Journal club
0
04-22-2011 02:00 PM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Angew Chem Int Ed Engl. 2011 Apr 14;
Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B