The dynamics of molecules in solution is usually quantified by the determination of timescale-specific amplitudes of motions. High-resolution nuclear magnetic resonance (NMR) relaxometry experimentsâ??where the sample is transferred to low fields for longitudinal (T1) relaxation, and back to high field for detection with residue-specific resolutionâ??seeks to increase the ability to distinguish the contributions from motion on timescales slower than a few nanoseconds. However, tumbling of a molecule in solution masks some of these motions. Therefore, we investigate to what extent relaxometry improves timescale resolution, using the â??detectorâ?? analysis of dynamics. Here, we demonstrate improvements in the characterization of internal dynamics of methyl-bearing side chains by carbon-13 relaxometry in the small protein ubiquitin. We show that relaxometry data leads to better information about nanosecond motions as compared to high-field relaxation data only. Our calculations show that gains from relaxometry are greater with increasing correlation time of rotational diffusion.
[NMR paper] Dynamic characteristics of GMP reductase complexes revealed by high resolution 31P field cycling NMR relaxometry.
Dynamic characteristics of GMP reductase complexes revealed by high resolution 31P field cycling NMR relaxometry.
Dynamic characteristics of GMP reductase complexes revealed by high resolution 31P field cycling NMR relaxometry.
Biochemistry. 2018 Mar 16;:
Authors: Rosenberg MM, Redfield AG, Roberts M, Hedstrom L
Abstract
The ability of enzymes to modulate the dynamics of bound substrates and cofactors is a critical feature of catalysis, but the role of dynamics has largely been approached from the perspective of the protein....
nmrlearner
Journal club
0
03-17-2018 12:12 PM
High sensitivity high-resolution full range relaxometry using a fast mechanical sample shuttling device and a cryo-probe
High sensitivity high-resolution full range relaxometry using a fast mechanical sample shuttling device and a cryo-probe
Abstract
Field-dependent NMR studies of bio-molecular systems using a sample shuttling hardware operating on a high-field NMR apparatus have provided valuable structural and dynamic information. We have recently published a design of a compact sample transportation device, called â??field-cyclerâ??, which was installed in a commercial spectrometer and which provided highly precise positioning and stability during high speed...
nmrlearner
Journal club
0
11-19-2016 08:35 PM
[NMR paper] Substrate and Cofactor Dynamics on Guanosine Monophosphate Reductase Probed by High Resolution Field Cycling 31P NMR Relaxometry.
Substrate and Cofactor Dynamics on Guanosine Monophosphate Reductase Probed by High Resolution Field Cycling 31P NMR Relaxometry.
Related Articles Substrate and Cofactor Dynamics on Guanosine Monophosphate Reductase Probed by High Resolution Field Cycling 31P NMR Relaxometry.
J Biol Chem. 2016 Sep 9;
Authors: Rosenberg MM, Redfield AG, Roberts MF, Hedstrom L
Abstract
Guanosine-5'-monophosphate reductase (GMPR) catalyzes the reduction of GMP to IMP and ammonia with concomitant oxidation of NADPH. Here we investigated the structure...
nmrlearner
Journal club
0
09-22-2016 06:31 AM
The â??long tailâ?? of the protein tumbling correlation function: observation by 1 H NMR relaxometry in a wide frequency and concentration range
The â??long tailâ?? of the protein tumbling correlation function: observation by 1 H NMR relaxometry in a wide frequency and concentration range
Abstract
Inter-protein interactions in solution affect the auto-correlation function of Brownian tumbling not only in terms of a simple increase of the correlation time, they also lead to the appearance of a weak slow component (â??long tailâ??) of the correlation function due to a slowly changing local anisotropy of the microenvironment. The conventional protocol of correlation time estimation from the...
nmrlearner
Journal club
0
11-19-2015 05:22 PM
NanosecondTime Scale Motions in Proteins Revealedby High-Resolution NMR Relaxometry
NanosecondTime Scale Motions in Proteins Revealedby High-Resolution NMR Relaxometry
Cyril Charlier, Shahid Nawaz Khan, Thorsten Marquardsen, Philippe Pelupessy, Volker Reiss, Dimitris Sakellariou, Geoffrey Bodenhausen, Frank Engelke and Fabien Ferrage
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja409820g/aop/images/medium/ja-2013-09820g_0008.gif
Journal of the American Chemical Society
DOI: 10.1021/ja409820g
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/QcFGZznyEp0
nmrlearner
Journal club
0
11-27-2013 01:50 AM
[NMR paper] Nanosecond timescale motions in proteins revealed by high-resolution NMR relaxometry.
Nanosecond timescale motions in proteins revealed by high-resolution NMR relaxometry.
Related Articles Nanosecond timescale motions in proteins revealed by high-resolution NMR relaxometry.
J Am Chem Soc. 2013 Nov 14;
Authors: Charlier CD, Khan SN, Marquardsen T, Pelupessy P, Reiss V, Sakellariou D, Bodenhausen G, Engelke F, Ferrage F
Abstract
Understanding the molecular determinants underlying protein function requires the characterization of both structure and dynamics at atomic resolution. Nuclear relaxation rates allow a precise...
nmrlearner
Journal club
0
11-16-2013 03:14 PM
[NMR paper] Long-Observation-Window Band-Selective Homonuclear Decoupling: Increased Sensitivity and Resolution in Solid-State NMR Spectroscopy of Proteins
Long-Observation-Window Band-Selective Homonuclear Decoupling: Increased Sensitivity and Resolution in Solid-State NMR Spectroscopy of Proteins
Publication date: Available online 13 September 2013
Source:Journal of Magnetic Resonance</br>
Author(s): Jochem O. Struppe , Chen Yang , Yachong Wang , Roy V. Hernandez , Lisa M. Shamansky , Leonard J. Mueller</br>
Sensitivity and resolution are the two fundamental obstacles to extending solid-state nuclear magnetic resonance to even larger protein systems. Here, a novel long-observation-window band-selective...
nmrlearner
Journal club
0
09-13-2013 12:05 PM
High resolution methyl selective 13C-NMR of proteins in solution and solid state
High resolution methyl selective 13C-NMR of proteins in solution and solid state
Abstract New 13C-detected NMR experiments have been devised for molecules in solution and solid state, which provide chemical shift correlations of methyl groups with high resolution, selectivity and sensitivity. The experiments achieve selective methyl detection by exploiting the one bond J-coupling between the 13C-methyl nucleus and its directly attached 13C spin in a molecule. In proteins such correlations edit the 13C-resonances of different methyl containing residues into distinct spectral regions...