BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-19-2010, 08:44 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default High-resolution NMR structure of the chemically-synthesized melanocortin receptor bin

High-resolution NMR structure of the chemically-synthesized melanocortin receptor binding domain AGRP(87-132) of the agouti-related protein.

Related Articles High-resolution NMR structure of the chemically-synthesized melanocortin receptor binding domain AGRP(87-132) of the agouti-related protein.

Biochemistry. 2001 Dec 25;40(51):15520-7

Authors: McNulty JC, Thompson DA, Bolin KA, Wilken J, Barsh GS, Millhauser GL

The agouti-related protein (AGRP) is an endogenous antagonist of the melanocortin receptors MC3R and MC4R found in the hypothalamus and exhibits potent orexigenic (appetite-stimulating) activity. The cysteine-rich C-terminal domain of this protein, corresponding to AGRP(87-132), contains five disulfide bonds and exhibits receptor binding affinity and antagonism equivalent to that of the full-length protein. The three-dimensional structure of this domain has been determined by 1H NMR at 800 MHz. The first 34 residues of AGRP(87-132) are well-ordered and contain a three-stranded antiparallel beta sheet, where the last two strands form a beta hairpin. The relative spatial positioning of the disulfide cross-links demonstrates that the ordered region of AGRP(87-132) adopts the inhibitor cystine knot (ICK) fold previously identified for numerous invertebrate toxins. Interestingly, this may be the first example of a mammalian protein assigned to the ICK superfamily. The hairpin's turn region presents a triplet of residues (Arg-Phe-Phe) known to be essential for melanocortin receptor binding. The structure also suggests that AGRP possesses an additional melanocortin-receptor contact region within a loop formed by the first 16 residues of its C-terminal domain. This specific region shows little sequence homology to the corresponding region of the agouti protein, which is an MC1R antagonist involved in pigmentation. Consideration of these sequence differences, along with recent experiments on mutant and chimeric melanocortin receptors, allows us to postulate that this loop in the first 16 residues of its C-terminal domain confers AGRP's distinct selectivity for MC3R and MC4R.

PMID: 11747427 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
High resolution NMR conformational studies of new bivalent NOP receptor antagonists in model membrane systems.
High resolution NMR conformational studies of new bivalent NOP receptor antagonists in model membrane systems. High resolution NMR conformational studies of new bivalent NOP receptor antagonists in model membrane systems. Bioorg Chem. 2011 Feb;39(1):59-66 Authors: Borioni A, Bastanzio G, Delfini M, Mustazza C, Sciubba F, Tatti M, Del Giudice MR The interaction of new bivalent NOP receptor antagonists with dodecyl phosphatidylcholine micelles and DMPC/cholesterol liposomes was investigated in solution by high resolution NMR. The ligands are...
nmrlearner Journal club 0 05-06-2011 02:00 AM
Incorporation of a Bioactive Reverse-Turn Heterocycle into a Peptide Template Using Solid-Phase Synthesis To Probe Melanocortin Receptor Selectivity and Ligand Conformations by 2D (1)H NMR.
Incorporation of a Bioactive Reverse-Turn Heterocycle into a Peptide Template Using Solid-Phase Synthesis To Probe Melanocortin Receptor Selectivity and Ligand Conformations by 2D (1)H NMR. Incorporation of a Bioactive Reverse-Turn Heterocycle into a Peptide Template Using Solid-Phase Synthesis To Probe Melanocortin Receptor Selectivity and Ligand Conformations by 2D (1)H NMR. J Med Chem. 2011 Feb 9; Authors: Singh A, Wilczynski A, Holder JR, Witek RM, Dirain ML, Xiang Z, Edison AS, Haskell-Luevano C By use of a solid-phase synthetic approach, a...
nmrlearner Journal club 0 02-11-2011 06:43 PM
[NMR paper] Investigation of ligand-receptor systems by high-resolution solid-state NMR: recent p
Investigation of ligand-receptor systems by high-resolution solid-state NMR: recent progress and perspectives. Related Articles Investigation of ligand-receptor systems by high-resolution solid-state NMR: recent progress and perspectives. Arch Pharm (Weinheim). 2005 Jun;338(5-6):217-28 Authors: Luca S, Heise H, Lange A, Baldus M Solid-state Nuclear Magnetic Resonance (NMR) provides a general method to study molecular structure and dynamics in a non-crystalline and insoluble environment. We discuss the latest methodological progress to...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] NMR analysis of in vitro-synthesized proteins without purification: a high-throughput
NMR analysis of in vitro-synthesized proteins without purification: a high-throughput approach. Related Articles NMR analysis of in vitro-synthesized proteins without purification: a high-throughput approach. FEBS Lett. 2002 Jul 31;524(1-3):159-62 Authors: Guignard L, Ozawa K, Pursglove SE, Otting G, Dixon NE A cell-free protein expression system was established that provides protein samples of adequate concentration and purity for direct NMR analysis. The Escherichia coli peptidyl-prolyl cis-trans isomerase PpiB was expressed in this system...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] High-resolution solution NMR structure of the Z domain of staphylococcal protein A.
High-resolution solution NMR structure of the Z domain of staphylococcal protein A. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles High-resolution solution NMR structure of the Z domain of staphylococcal protein A. J Mol Biol. 1997 Oct 3;272(4):573-90 Authors: Tashiro M, Tejero R, Zimmerman DE, Celda B, Nilsson B, Montelione GT Staphylococcal protein A (SpA) is a cell-wall-bound pathogenicity factor from the bacterium Staphylococcus aureus. Because of their small size...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] A high-resolution 1H NMR approach for structure determination of membrane peptides an
A high-resolution 1H NMR approach for structure determination of membrane peptides and proteins in non-deuterated detergent: application to mastoparan X solubilized in n-octylglucoside. Related Articles A high-resolution 1H NMR approach for structure determination of membrane peptides and proteins in non-deuterated detergent: application to mastoparan X solubilized in n-octylglucoside. J Biomol NMR. 1995 Jun;5(4):345-52 Authors: Seigneuret M, Lévy D Application of 1H 2D NMR methods to solubilized membrane proteins and peptides has up to now...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] High-resolution structure of the phosphorylated form of the histidine-containing phos
High-resolution structure of the phosphorylated form of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from NMR-NOE data. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles High-resolution structure of the phosphorylated form of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from NMR-NOE data. J Mol Biol. 1995 Feb 10;246(1):180-93 Authors: van...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] High-resolution structure of the oligomerization domain of p53 by multidimensional NM
High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Related Articles High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science. 1994 Jul 15;265(5170):386-91 Authors: Clore GM, Omichinski JG, Sakaguchi K, Zambrano N, Sakamoto H, Appella E, Gronenborn AM The three-dimensional structure of the oligomerization domain (residues 319 to 360) of the tumor suppressor p53 has been solved by multidimensional heteronuclear magnetic resonance (NMR) spectroscopy. The domain forms a...
nmrlearner Journal club 0 08-22-2010 03:29 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:43 AM.


Map