Abstract Improvements are described in a shuttling field-cycling device (Redfield in Magn Reson Chem 41:753â??768, 2003), designed to allow widespread access to this useful technique by configuring it as a removable module to a commercial 500 MHz NMR instrument. The main improvements described here, leading to greater versatility, high reliability and simple construction, include: shuttling provided by a linear motor driven by an integrated-control servomotor; provision of automated bucking magnets to allow fast two-stage cycling to nearly zero field; and overall control by a microprocessor. A brief review of history and publications that have used the system is followed by a discussion of topics related to such a device including discussion of some future applications. A description of new aspects of the shuttling device follows. The minimum round trip time to 1T and above is less than 0.25 s and to 0.002 T is 0.36 s. Commercial probes are used and sensitivity is that of the host spectrometer reduced only by relaxation during travel. A key element is development of a linkage that prevents vibration of the linear motor from reaching the probe.
Content Type Journal Article
Category Article
Pages 1-19
DOI 10.1007/s10858-011-9594-1
Authors
Alfred G. Redfield, Biochemistry Department, Brandeis University, Mail stop 009, Waltham, MA 02154, USA
Field-cycling NMR relaxometry of viscous liquids and polymers
Field-cycling NMR relaxometry of viscous liquids and polymers
Publication year: 2011
Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 27 August 2011</br>
D., Kruk , A., Herrmann , E.A., Rössler</br>
Graphical abstract
*Graphical abstract:**Highlights:*? NMR relaxometry compared with DQ NMR, dielectric spectroscopy and light scattering ? Applying susceptibility representation and frequency-temperature superposition ? Liquids: Intra- & intermolecular relaxation give rotational & translational correlation times ? Polymers:...
High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field
High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field
Abstract Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly-13C,15N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla (1H frequencies of...
nmrlearner
Journal club
0
01-09-2011 12:46 PM
Time-shared HSQC-NOESY for accurate distance constraints measured at high-field in 15N-13C-ILV methyl labeled proteins
Time-shared HSQC-NOESY for accurate distance constraints measured at high-field in 15N-13C-ILV methyl labeled proteins
Abstract We present a time-shared 3D HSQC-NOESY experiment that enables one to simultaneously record 13C- and 15N-dispersed spectra in Ile, Leu and Val (ILV) methyl-labeled samples. This experiment is designed to delineate the two spectra which would otherwise overlap with one another when acquired together. These spectra display nOe correlations in the detected proton dimension, i.e. with maximum resolution. This is in contrast to NOESY-HSQC types of experiments that...
nmrlearner
Journal club
0
01-09-2011 12:46 PM
[NMR paper] High-resolution 31p field cycling NMR as a probe of phospholipid dynamics.
High-resolution 31p field cycling NMR as a probe of phospholipid dynamics.
Related Articles High-resolution 31p field cycling NMR as a probe of phospholipid dynamics.
J Am Chem Soc. 2004 Oct 27;126(42):13765-77
Authors: Roberts MF, Redfield AG
We have used high-resolution field-cycling 31P NMR spectroscopy to measure spin-lattice relaxation rates (R1 = 1/T1) of multicomponent phospholipid vesicle and micelle samples over a large field range, from 0.1 to 11.7 T. The shape of the curve for R1 as a function of field and a model-free analysis were...
nmrlearner
Journal club
0
11-24-2010 10:01 PM
[NMR paper] Mapping oxygen accessibility to ribonuclease a using high-resolution NMR relaxation s
Mapping oxygen accessibility to ribonuclease a using high-resolution NMR relaxation spectroscopy.
Related Articles Mapping oxygen accessibility to ribonuclease a using high-resolution NMR relaxation spectroscopy.
Biophys J. 2004 Mar;86(3):1713-25
Authors: Teng CL, Bryant RG
Paramagnetic contributions to nuclear magnetic spin-lattice relaxation rate constant induced by freely diffusing molecular oxygen measured at hundreds of different protein proton sites provide a direct means for characterizing the exploration of the protein by oxygen. This...