Related ArticlesHigh-resolution 31p field cycling NMR as a probe of phospholipid dynamics.
J Am Chem Soc. 2004 Oct 27;126(42):13765-77
Authors: Roberts MF, Redfield AG
We have used high-resolution field-cycling 31P NMR spectroscopy to measure spin-lattice relaxation rates (R1 = 1/T1) of multicomponent phospholipid vesicle and micelle samples over a large field range, from 0.1 to 11.7 T. The shape of the curve for R1 as a function of field and a model-free analysis were used to extract tauc, a correlation time for each type of phospholipid molecule in the bilayer that is likely to reflect rotation of the molecule about the axis perpendicular to the membrane surface; Sc2, a chemical shift anisotropy (CSA) order parameter; and tauhf, a time constant reflecting faster internal motion. This 31P technique was also used to monitor association of a peripheral membrane protein, Bacillus thuringiensis phosphatidylinositol-specific phospholipase C, with both phosphatidylcholine and phosphatidylmethanol bilayers. Differences in phospholipid dynamics induced by the protein shed light on how zwitterionic phosphatidylcholine, and not the anionic phosphatidylmethanol, activates the enzyme toward its substrate.
Ultra-high resolution in MAS solid-state NMR of perdeuterated proteins: Implications for Structure and Dynamics
Ultra-high resolution in MAS solid-state NMR of perdeuterated proteins: Implications for Structure and Dynamics
Publication year: 2012
Source: Journal of Magnetic Resonance, Available online 5 January 2012</br>
Bernd*Reif</br>
http://www.sciencedirect.com/cache/MiamiImageURL/1-s2.0-S1090780711005969-fx1.sml</br></br></br>
Source: Journal of Magnetic Resonance
nmrlearner
Journal club
0
01-07-2012 03:12 PM
High-resolution NMR field-cycling device for full-range relaxation and structural studies of biopolymers on a shared commercial instrument
High-resolution NMR field-cycling device for full-range relaxation and structural studies of biopolymers on a shared commercial instrument
Abstract Improvements are described in a shuttling field-cycling device (Redfield in Magn Reson Chem 41:753â??768, 2003), designed to allow widespread access to this useful technique by configuring it as a removable module to a commercial 500 MHz NMR instrument. The main improvements described here, leading to greater versatility, high reliability and simple construction, include: shuttling provided by a linear motor driven by an integrated-control...
nmrlearner
Journal club
0
12-31-2011 10:40 AM
Field-cycling NMR relaxometry of viscous liquids and polymers
Field-cycling NMR relaxometry of viscous liquids and polymers
Publication year: 2011
Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 27 August 2011</br>
D., Kruk , A., Herrmann , E.A., Rössler</br>
Graphical abstract
*Graphical abstract:**Highlights:*? NMR relaxometry compared with DQ NMR, dielectric spectroscopy and light scattering ? Applying susceptibility representation and frequency-temperature superposition ? Liquids: Intra- & intermolecular relaxation give rotational & translational correlation times ? Polymers:...
nmrlearner
Journal club
0
08-29-2011 06:41 AM
High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field
High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field
Abstract Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly-13C,15N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla (1H frequencies of...
nmrlearner
Journal club
0
01-09-2011 12:46 PM
[NMR paper] High-resolution NMR structure and backbone dynamics of the Bacillus subtilis response
High-resolution NMR structure and backbone dynamics of the Bacillus subtilis response regulator, Spo0F: implications for phosphorylation and molecular recognition.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles High-resolution NMR structure and backbone dynamics of the Bacillus subtilis response regulator, Spo0F: implications for phosphorylation and molecular recognition.
Biochemistry. 1997 Aug 19;36(33):10015-25
Authors: Feher VA, Zapf JW, Hoch JA, Whiteley JM, McIntosh LP, Rance M, Skelton NJ,...
nmrlearner
Journal club
0
08-22-2010 05:08 PM
[NMR paper] Resolution of individual lipids in mixed phospholipid membranes and specific lipid-cy
Resolution of individual lipids in mixed phospholipid membranes and specific lipid-cytochrome c interactions by magic-angle spinning solid-state phosphorus-31 NMR.
Related Articles Resolution of individual lipids in mixed phospholipid membranes and specific lipid-cytochrome c interactions by magic-angle spinning solid-state phosphorus-31 NMR.
Biochemistry. 1994 Mar 8;33(9):2459-67
Authors: Pinheiro TJ, Watts A
A model of the inner mitochondrial membrane was constructed with dioleoyphosphatidylcholine (PC), dioleoylphosphatidylethanolamine...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] High-resolution 13C NMR study of the topography and dynamics of methionine residues i
High-resolution 13C NMR study of the topography and dynamics of methionine residues in detergent-solubilized bacteriorhodopsin.
Related Articles High-resolution 13C NMR study of the topography and dynamics of methionine residues in detergent-solubilized bacteriorhodopsin.
Biochemistry. 1991 Apr 23;30(16):3885-92
Authors: Seigneuret M, Neumann JM, Levy D, Rigaud JL
The proton transport membrane protein bacteriorhodopsin has been biosynthetically labeled with methionine and studied by high-resolution 13C NMR after solubilization in the detergent...