BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR

Rate This Paper:

Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-14-2018, 10:02 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,795
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default High Pressure NMR and SAXS Reveals How Capping Modulates Folding Cooperativity of the pp32 Leucine Rich Repeat Protein

High Pressure NMR and SAXS Reveals How Capping Modulates Folding Cooperativity of the pp32 Leucine Rich Repeat Protein

Publication date: Available online 13 March 2018
Source:Journal of Molecular Biology

Author(s): Yi Zhang, Melanie Berghaus, Sean Klein, Kelly Jenkins, Siwen Zhang, Scott A. McCallum, Joel Morgan, Roland Winter, Doug Barrick, Catherine A. Royer

Many repeat proteins contain capping motifs, which serve to shield the hydrophobic core from solvent and maintain structural integrity. While the role of capping motifs in enhancing the stability and structural integrity of repeat proteins is well-documented, their contribution to folding cooperativity is not. Here we examined the role of capping motifs in defining the folding cooperativity of the leucine rich repeat protein, pp32, by monitoring the pressure and urea induced unfolding of an N-cap deletion mutant, pp32-?N-cap, and a C-cap destabilization mutant pp32-Y131F/D146L, using residue specific NMR and SAXS. Destabilization of the C-cap motif resulted in higher cooperativity for the unfolding transition compared to wild type pp32, as these mutations render the stability of the C-terminus similar to that of the rest of the protein. In contrast, deletion of the N-terminal capping motif led to strong deviation from two-state unfolding. In both urea and pressure-induced unfolding, residues in repeats 1–3 of pp32-?N-cap lost their native structure first, while the C-terminal half was more stable. The residue-specific free energy changes in all regions of pp32-?N-cap were larger in urea compared to high pressure, indicating a less cooperative destabilization by pressure. Moreover, in contrast to complete structural disruption of pp32-?N-cap at high urea concentration, its pressure unfolded state remained compact. The contrasting effects of the capping motifs on folding cooperativity arise from the differential local stabilities of pp32, whereas the contrasting effects of pressure and urea on the pp32-?N-cap variant arise from their distinct mechanisms of action.
Graphical abstract








More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Monitoring protein folding through high pressure NMR spectroscopy.
Monitoring protein folding through high pressure NMR spectroscopy. Monitoring protein folding through high pressure NMR spectroscopy. Prog Nucl Magn Reson Spectrosc. 2017 Nov;102-103:15-31 Authors: Roche J, Royer CA, Roumestand C Abstract High-pressure is a well-known perturbation method used to destabilize globular proteins. It is perfectly reversible, which is essential for a proper thermodynamic characterization of a protein equilibrium. In contrast to other perturbation methods such as heat or chemical denaturant that...
nmrlearner Journal club 0 11-22-2017 02:01 PM
Monitoring Protein Folding Through High Pressure NMR Spectroscopy
Monitoring Protein Folding Through High Pressure NMR Spectroscopy Publication date: Available online 2 June 2017 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): Julien Roche, Catherine A. Royer, Christian Roumestand</br> High-pressure is a well-known perturbation method used to destabilize globular proteins. It is perfectly reversible, which is essential for a proper thermodynamic characterization of a protein equilibrium. In contrast to other perturbation methods such as heat or chemical denaturant that destabilize protein structures...
nmrlearner Journal club 0 06-02-2017 08:33 PM
[NMR paper] High-pressure NMR techniques for the study of protein dynamics, folding and aggregation.
High-pressure NMR techniques for the study of protein dynamics, folding and aggregation. Related Articles High-pressure NMR techniques for the study of protein dynamics, folding and aggregation. J Magn Reson. 2017 Apr;277:179-185 Authors: Nguyen LM, Roche J Abstract High-pressure is a well-known perturbation method used to destabilize globular proteins and dissociate protein complexes or aggregates. The heterogeneity of the response to pressure offers a unique opportunity to dissect the thermodynamic contributions to protein...
nmrlearner Journal club 0 04-02-2017 11:43 AM
High-pressure NMR techniques for the study of protein dynamics, folding and aggregation
High-pressure NMR techniques for the study of protein dynamics, folding and aggregation Publication date: April 2017 Source:Journal of Magnetic Resonance, Volume 277</br> Author(s): Luan M. Nguyen, Julien Roche</br> High-pressure is a well-known perturbation method used to destabilize globular proteins and dissociate protein complexes or aggregates. The heterogeneity of the response to pressure offers a unique opportunity to dissect the thermodynamic contributions to protein stability. In addition, pressure perturbation is generally reversible, which is essential...
nmrlearner Journal club 0 03-30-2017 06:42 PM
Using High Pressure NMR to Study Folding Cooperativity and Kinetics of Protein L9
Using High Pressure NMR to Study Folding Cooperativity and Kinetics of Protein L9 Publication date: 3 February 2017 Source:Biophysical Journal, Volume 112, Issue 3, Supplement 1</br> Author(s): Yi Zhang, Soichiro Kitazawa, Ivan Peran, Natalie Stenzoski, Scott McCallum, Daniel Raleigh, Catherine Royer</br> </br></br> </br></br> More...
nmrlearner Journal club 0 02-03-2017 09:55 PM
Cavities and Cooperativity in the Folding of the Leucine Rich Repeat Protein PP32: A Pressure-Jump Fluorescence and High Pressure NMR Study
Cavities and Cooperativity in the Folding of the Leucine Rich Repeat Protein PP32: A Pressure-Jump Fluorescence and High Pressure NMR Study Publication date: 3 February 2017 Source:Biophysical Journal, Volume 112, Issue 3, Supplement 1</br> Author(s): Kelly A. Jenkins, Martin Fossat, Thuy Dao, Yi Zhang, Zackery White, Doug Barrick, Catherine A. Royer</br> </br></br> </br></br> More...
nmrlearner Journal club 0 02-03-2017 09:55 PM
Exploring Folding Cooperativity of a Repeat Protein Folding by 2D-NMR Detected Pressure Perturbation
Exploring Folding Cooperativity of a Repeat Protein Folding by 2D-NMR Detected Pressure Perturbation Publication date: 16 February 2016 Source:Biophysical Journal, Volume 110, Issue 3, Supplement 1</br> Author(s): Martin J. Fossat, Angel Garcia, Doug Barrick, Christian Roumestand, Catherine A. Royer</br> </br></br> </br></br> More...
nmrlearner Journal club 0 02-17-2016 07:50 PM
[NMR paper] Exploring the Protein Folding Pathway with High-Pressure NMR: Steady-State and Kinetics Studies.
Exploring the Protein Folding Pathway with High-Pressure NMR: Steady-State and Kinetics Studies. Related Articles Exploring the Protein Folding Pathway with High-Pressure NMR: Steady-State and Kinetics Studies. Subcell Biochem. 2015;72:261-278 Authors: Roche J, Dellarole M, Royer CA, Roumestand C Abstract Defining the physical-chemical determinants of protein folding and stability, under normal and pathological conditions has constituted a major subfield in biophysical chemistry for over 50 years. Although a great deal of...
nmrlearner Journal club 0 07-16-2015 11:21 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:25 AM.


Map