BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 12-29-2016, 09:23 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,733
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Hexagonal ice in pure water and biological NMR samples.

Hexagonal ice in pure water and biological NMR samples.

Related Articles Hexagonal ice in pure water and biological NMR samples.

J Biomol NMR. 2016 Dec 27;:

Authors: Bauer T, Gath J, Hunkeler A, Ernst M, Böckmann A, Meier BH

Abstract
Ice, in addition to "liquid" water and protein, is an important component of protein samples for NMR spectroscopy at subfreezing temperatures but it has rarely been observed spectroscopically in this context. We characterize its spectroscopic behavior in the temperature range from 100 to 273*K, and find that it behaves like pure water ice. The interference of magic-angle spinning (MAS) as well as rf multiple-pulse sequences with Bjerrum-defect motion greatly influences the ice spectra.


PMID: 28028745 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Hexagonal ice in pure water and biological NMR samples
Hexagonal ice in pure water and biological NMR samples Abstract Ice, in addition to â??liquidâ?? water and protein, is an important component of protein samples for NMR spectroscopy at subfreezing temperatures but it has rarely been observed spectroscopically in this context. We characterize its spectroscopic behavior in the temperature range from 100 to 273Â*K, and find that it behaves like pure water ice. The interference of magic-angle spinning (MAS) as well as rf multiple-pulse sequences with Bjerrum-defect motion greatly influences the ice...
nmrlearner Journal club 0 12-27-2016 11:04 PM
[Question from NMRWiki Q&A forum] Relaxation rate of bulk (pure) water at high frequencies
Relaxation rate of bulk (pure) water at high frequencies Hi all, Does anyone know if NMR relaxation rates of bulk (pure) water has been measured experimentally at several hundreds of MHz frequencies (say, 500 MHz, though the higher the better) and at room temperature (say, 300K)? I am aware of some very old publications that reported pure water T1 at 10s of MHz (e.g. Krynicki (1966), Physica 32:167) or at the lower end of the 100s of MHz regime. However, in recent years NMR instruments have been getting better and better and I believe today several hundreds of MHz experiments are...
nmrlearner News from other NMR forums 0 07-03-2016 08:48 AM
[NMR paper] Pure shift NMR.
Pure shift NMR. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-elsevieroa.png http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Pure shift NMR. Prog Nucl Magn Reson Spectrosc. 2015 Apr;86-87:1-20 Authors: Zangger K Abstract Although scalar-coupling provides important structural information, the resulting signal splittings significantly reduce the resolution of NMR spectra. Limited...
nmrlearner Journal club 0 04-12-2016 09:12 PM
Characterization of different water pools in solid-state NMR protein samples
Characterization of different water pools in solid-state NMR protein samples Abstract We observed and characterized two distinct signals originating from different pools of water protons in solid-state NMR protein samples, namely from crystal water which exchanges polarization with the protein (on the NMR timescale) and is located in the protein-rich fraction at the periphery of the magic-angle spinning (MAS) sample container, and supernatant water located close to the axis of the sample container. The polarization transfer between the water and the protein can be probed by...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMR paper] Observation of reorientationally hindered water in biological tissue using triple qua
Observation of reorientationally hindered water in biological tissue using triple quantum filtered 17O-NMR. Related Articles Observation of reorientationally hindered water in biological tissue using triple quantum filtered 17O-NMR. Biochim Biophys Acta. 1995 Jun 9;1244(2-3):253-8 Authors: Flesche CW, Gruwel ML, Deussen A, Schrader J Water dynamics in aqueous biopolymer solutions often display a two-phase character, resembling water-water and water-protein interactions. Rotationally hindered water molecules in crowded protein environments...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMRwiki tweet] nmrwiki: Unanswered question: For salty #NMR samples - which water suppression is bes
nmrwiki: Unanswered question: For salty #NMR samples - which water suppression is best? http://qa.nmrwiki.org/question/132/ nmrwiki: Unanswered question: For salty #NMR samples - which water suppression is best? http://qa.nmrwiki.org/question/132/ Source: NMRWiki tweets
nmrlearner Twitter NMR 0 08-22-2010 01:49 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:27 PM.


Map