Related ArticlesHelical structure and folding of subunit c of F1F0 ATP synthase: 1H NMR resonance assignments and NOE analysis.
Biochemistry. 1993 Nov 16;32(45):12167-77
Authors: Girvin ME, Fillingame RH
Subunit c of the H(+)-transporting F1F0 ATP synthase (EC 3.6.1.34) is thought to fold across the membrane as a hairpin of two alpha-helices and function as a key component of the H(+)-translocase of F0. We report here the initial results of a structural study of purified subunit c in a chloroform-methanol-water (4:4:1) solvent mixture using standard two-dimensional NMR techniques. The spin systems of 78 of the 79 amino acid side chains have been assigned to residue type, and 44 of these have been assigned to specific residues in the sequence. Stretches of alpha-helical secondary structure were observed for Asp7-ILe26 in the first proposed transmembrane helix, and for Arg50-Ile55 and Ala67-Val78 in the second proposed transmembrane helix. Nuclear Overhauser effects (NOEs) were observed between residues at both ends of the predicted transmembrane helices. The intensities of the NOEs between helix-1 and helix-2 were not diminished by mixing of 2H-subunit c with 1H-subunit c, and therefore the NOEs must be due to intramolecular, rather than intermolecular, interactions. Hence the purified protein must fold as a hairpin in this solvent system, just as it is thought to fold in the lipid bilayer of the membrane. In native F0, dicyclohexylcarbodiimide reacts specifically with Asp61 in the second transmembrane helix of subunit c, and the rate of this reaction is reduced by substitution of Ile28 by Thr on the first transmembrane helix. The I28T substitution is shown here to alter the chemical shifts of protons at and around Asp61. This observation provides a further indication that subunit c may fold in chloroform-methanol-water solvent much like it does in the membrane.
Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthase by solid-state NMR.
Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthase by solid-state NMR.
Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthase by solid-state NMR.
J Biomol NMR. 2010 Sep;48(1):1-11
Authors: Todokoro Y, Kobayashi M, Sato T, Kawakami T, Yumen I, Aimoto S, Fujiwara T, Akutsu H
The subunit c-ring of H(+)-ATP synthase (F(o) c-ring) plays an essential role in the proton translocation across a membrane driven by the electrochemical potential. To understand its structure and function, we...
nmrlearner
Journal club
0
12-18-2010 12:00 PM
[NMR paper] Structural characterization of the interaction of the delta and alpha subunits of the Escherichia coli F1F0-ATP synthase by NMR spectroscopy.
Structural characterization of the interaction of the delta and alpha subunits of the Escherichia coli F1F0-ATP synthase by NMR spectroscopy.
Related Articles Structural characterization of the interaction of the delta and alpha subunits of the Escherichia coli F1F0-ATP synthase by NMR spectroscopy.
Biochemistry. 2005 Sep 6;44(35):11786-94
Authors: Wilkens S, Borchardt D, Weber J, Senior AE
A critical point of interaction between F(1) and F(0) in the bacterial F(1)F(0)-ATP synthase is formed by the alpha and delta subunits. Previous work has...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Helical structure determined by NMR of the HIV-1 (345-392)Gag sequence, surrounding p
Helical structure determined by NMR of the HIV-1 (345-392)Gag sequence, surrounding p2: implications for particle assembly and RNA packaging.
Related Articles Helical structure determined by NMR of the HIV-1 (345-392)Gag sequence, surrounding p2: implications for particle assembly and RNA packaging.
Protein Sci. 2005 Feb;14(2):375-86
Authors: Morellet N, Druillennec S, Lenoir C, Bouaziz S, Roques BP
Gag protein oligomerization, an essential step during virus assembly, results in budding of spherical virus particles. This process is critically...
nmrlearner
Journal club
0
11-24-2010 11:14 PM
[NMR paper] Subunit A of the E. coli ATP synthase: reconstitution and high resolution NMR with pr
Subunit A of the E. coli ATP synthase: reconstitution and high resolution NMR with protein purified in a mixed polarity solvent.
Related Articles Subunit A of the E. coli ATP synthase: reconstitution and high resolution NMR with protein purified in a mixed polarity solvent.
FEBS Lett. 2004 Jan 2;556(1-3):35-8
Authors: Dmitriev OY, Altendorf K, Fillingame RH
Subunit a of the Escherichia coli ATP synthase, a 30 kDa integral membrane protein, was purified to homogeneity by a novel procedure incorporating selective extraction into a monophasic...
nmrlearner
Journal club
0
11-24-2010 09:25 PM
[NMR paper] NMR structure of the N-SH2 of the p85 subunit of phosphoinositide 3-kinase complexed
NMR structure of the N-SH2 of the p85 subunit of phosphoinositide 3-kinase complexed to a doubly phosphorylated peptide reveals a second phosphotyrosine binding site.
Related Articles NMR structure of the N-SH2 of the p85 subunit of phosphoinositide 3-kinase complexed to a doubly phosphorylated peptide reveals a second phosphotyrosine binding site.
Biochemistry. 2000 Dec 26;39(51):15860-9
Authors: Weber T, Schaffhausen B, Liu Y, Günther UL
The N-terminal src homology 2 (SH2) domain of the p85 subunit of phosphoinositide 3-kinase (PI3K) has a...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
[NMR paper] CD and NMR investigations on trifluoroethanol-induced step-wise folding of helical se
CD and NMR investigations on trifluoroethanol-induced step-wise folding of helical segment from scorpion neurotoxin.
Related Articles CD and NMR investigations on trifluoroethanol-induced step-wise folding of helical segment from scorpion neurotoxin.
Eur J Biochem. 1999 Sep;264(2):468-78
Authors: Khandelwal P, Seth S, Hosur RV
A 14 amino acid residue peptide from the helical region of Scorpion neurotoxin has been structurally characterized using CD and NMR spectroscopy in different solvent conditions. 2,2,2-Trifluoroethanol (TFE) titration has...
nmrlearner
Journal club
0
11-18-2010 08:31 PM
[NMR paper] Proton-translocating carboxyl of subunit c of F1Fo H(+)-ATP synthase: the unique envi
Proton-translocating carboxyl of subunit c of F1Fo H(+)-ATP synthase: the unique environment suggested by the pKa determined by 1H NMR.
Related Articles Proton-translocating carboxyl of subunit c of F1Fo H(+)-ATP synthase: the unique environment suggested by the pKa determined by 1H NMR.
Biochemistry. 1995 Dec 12;34(49):16186-93
Authors: Assadi-Porter FM, Fillingame RH
Subunit c of the H(+)-transporting F1Fo ATP synthase (EC 3.6.1.34) is thought to fold across the membrane as a hairpin of two alpha helices with a conserved Asp/Glu residue,...
nmrlearner
Journal club
0
08-22-2010 03:50 AM
[NMR paper] Structural features of the epsilon subunit of the Escherichia coli ATP synthase deter
Structural features of the epsilon subunit of the Escherichia coli ATP synthase determined by NMR spectroscopy.
Related Articles Structural features of the epsilon subunit of the Escherichia coli ATP synthase determined by NMR spectroscopy.
Nat Struct Biol. 1995 Nov;2(11):961-7
Authors: Wilkens S, Dahlquist FW, McIntosh LP, Donaldson LW, Capaldi RA
The tertiary fold of the epsilon subunit of the Escherichia coli F1F0 ATPsynthase (ECF1F0) has been determined by two- and three-dimensional heteronuclear (13C, 15N) NMR spectroscopy. The epsilon...