?-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR.
Proc Natl Acad Sci U S A. 2014 Dec 30;
Authors: Vasa S, Lin L, Shi C, Habenstein B, Riedel D, Kühn J, Thanbichler M, Lange A
Abstract
Bactofilins are a widespread class of bacterial filament-forming proteins, which serve as cytoskeletal scaffolds in various cellular pathways. They are characterized by a conserved architecture, featuring a central conserved domain (DUF583) that is flanked by variable terminal regions. Here, we present a detailed investigation of bactofilin filaments from Caulobacter crescentus by high-resolution solid-state NMR spectroscopy. De novo sequential resonance assignments were obtained for residues Ala39 to Phe137, spanning the conserved DUF583 domain. Analysis of the secondary chemical shifts shows that this core region adopts predominantly ?-sheet secondary structure. Mutational studies of conserved hydrophobic residues located in the identified ?-strand segments suggest that bactofilin folding and polymerization is mediated by an extensive and redundant network of hydrophobic interactions, consistent with the high intrinsic stability of bactofilin polymers. Transmission electron microscopy revealed a propensity of bactofilin to form filament bundles as well as sheet-like, 2D crystalline assemblies, which may represent the supramolecular arrangement of bactofilin in the native context. Based on the diffraction pattern of these 2D crystalline assemblies, scanning transmission electron microscopy measurements of the mass per length of BacA filaments, and the distribution of ?-strand segments identified by solid-state NMR, we propose that the DUF583 domain adopts a ?-helical architecture, in which 18 ?-strand segments are arranged in six consecutive windings of a ?-helix.
PMID: 25550503 [PubMed - as supplied by publisher]
[NMR paper] Solid state NMR: The essential technology for helical membrane protein structural characterization.
Solid state NMR: The essential technology for helical membrane protein structural characterization.
Related Articles Solid state NMR: The essential technology for helical membrane protein structural characterization.
J Magn Reson. 2013 Dec 19;
Authors: Cross TA, Ekanayake V, Paulino J, Wright A
Abstract
NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample...
nmrlearner
Journal club
0
01-15-2014 05:16 PM
[NMR paper] Solid State NMR: The Essential Technology for Helical Membrane Protein Structural Characterization
Solid State NMR: The Essential Technology for Helical Membrane Protein Structural Characterization
Publication date: Available online 19 December 2013
Source:Journal of Magnetic Resonance</br>
Author(s): Timothy A. Cross , Vindana Ekanayake , Joana Paulino , Anna Wright</br>
NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR...
?-Sheet Coreof Tau Paired Helical FilamentsRevealed by Solid-State NMR
?-Sheet Coreof Tau Paired Helical FilamentsRevealed by Solid-State NMR
Venita Daebel, Subashchandrabose Chinnathambi, Jacek Biernat, Martin Schwalbe, Birgit Habenstein, Antoine Loquet, Elias Akoury, Katharina Tepper, Henrik Mu?ller, Marc Baldus, Christian Griesinger, Markus Zweckstetter, Eckhard Mandelkow, Vinesh Vijayan and Adam Lange
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja305470p/aop/images/medium/ja-2012-05470p_0008.gif
Journal of the American Chemical Society
DOI: 10.1021/ja305470p...
nmrlearner
Journal club
0
08-22-2012 02:55 PM
Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR.
Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR.
Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR.
Proc Natl Acad Sci U S A. 2011 Jul 5;
Authors: Kato H, van Ingen H, Zhou BR, Feng H, Bustin M, Kay LE, Bai Y
Chromatin structure and function are regulated by numerous proteins through specific binding to nucleosomes. The structural basis of many of these interactions is unknown, as in the case of the high mobility...
nmrlearner
Journal club
0
07-07-2011 05:12 PM
Solid-state NMR detection of (14) N?(13) C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture.
Solid-state NMR detection of (14) N?(13) C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture.
Solid-state NMR detection of (14) N?(13) C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture.
Magn Reson Chem. 2011 Feb;49(2):65-9
Authors: Middleton DA
Solid-state nuclear magnetic resonance (SSNMR) is a powerful technique for the structural analysis of amyloid fibrils. With suitable isotope labelling patterns, SSNMR can provide constraints on the...
nmrlearner
Journal club
0
01-22-2011 01:52 PM
Solid-state NMR detection of (14)N--(13)C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture.
Solid-state NMR detection of (14)N--(13)C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture.
Solid-state NMR detection of (14)N--(13)C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture.
Magn Reson Chem. 2011 Jan 3;
Authors: Middleton DA
Solid-state nuclear magnetic resonance (SSNMR) is a powerful technique for the structural analysis of amyloid fibrils. With suitable isotope labelling patterns, SSNMR can provide constraints on the secondary...
nmrlearner
Journal club
0
01-05-2011 09:51 PM
[NMR paper] A solid-state NMR index of helical membrane protein structure and topology.
A solid-state NMR index of helical membrane protein structure and topology.
Related Articles A solid-state NMR index of helical membrane protein structure and topology.
J Magn Reson. 2000 May;144(1):150-5
Authors: Marassi FM, Opella SJ
The secondary structure and topology of membrane proteins can be described by inspection of two-dimensional (1)H-(15)N dipolar coupling/(15)N chemical shift polarization inversion spin exchange at the magic angle spectra obtained from uniformly (15)N-labeled samples in oriented bilayers. The characteristic...