Related ArticlesHandling the influence of chemical shift in amplitude-modulated heteronuclear dipolar recoupling solid-state NMR.
J Chem Phys. 2016 Sep 07;145(9):094202
Authors: Basse K, Shankar R, Bjerring M, Vosegaard T, Nielsen NC, Nielsen AB
Abstract
We present a theoretical analysis of the influence of chemical shifts on amplitude-modulated heteronuclear dipolar recoupling experiments in solid-state NMR spectroscopy. The method is demonstrated using the Rotor Echo Short Pulse IRrAdiaTION mediated Cross-Polarization ((RESPIRATION)CP) experiment as an example. By going into the pulse sequence rf interaction frame and employing a quintuple-mode operator-based Floquet approach, we describe how chemical shift offset and anisotropic chemical shift affect the efficiency of heteronuclear polarization transfer. In this description, it becomes transparent that the main attribute leading to non-ideal performance is a fictitious field along the rf field axis, which is generated from second-order cross terms arising mainly between chemical shift tensors and themselves. This insight is useful for the development of improved recoupling experiments. We discuss the validity of this approach and present quaternion calculations to determine the effective resonance conditions in a combined rf field and chemical shift offset interaction frame transformation. Based on this, we derive a broad-banded version of the (RESPIRATION)CP experiment. The new sequence is experimentally verified using SNNFGAILSS amyloid fibrils where simultaneous (15)N -> (13)CO and (15)N -> (13)C? coherence transfer is demonstrated on high-field NMR instrumentation, requiring great offset stability.
[NMR paper] Band-selective heteronuclear dipolar recoupling with dual back-to-back pulses in rotating solids
Band-selective heteronuclear dipolar recoupling with dual back-to-back pulses in rotating solids
Publication date: Available online 6 September 2016
Source:Journal of Magnetic Resonance</br>
Author(s): Zhengfeng Zhang, Yanke Chen, Jun Yang</br>
We propose a robust band-selective heteronuclear 15N-13C recoupling method using dual back-to-back (BABA) pulses (DBP). It contains four 90° pulses in each rotor period and corresponding phase cycling on each channel (13C and 15N). DBP aims at rapid band-selective heteronuclear magnetization transfer between 15N and...
nmrlearner
Journal club
0
09-22-2016 06:26 AM
[NMR paper] MAS solid state NMR of proteins: simultaneous (15)N- (13)CA and (15)N- (13)CO dipolar recoupling via low-power symmetry-based RF pulse schemes.
MAS solid state NMR of proteins: simultaneous (15)N- (13)CA and (15)N- (13)CO dipolar recoupling via low-power symmetry-based RF pulse schemes.
MAS solid state NMR of proteins: simultaneous (15)N- (13)CA and (15)N- (13)CO dipolar recoupling via low-power symmetry-based RF pulse schemes.
J Biomol NMR. 2015 Feb 25;
Authors: Herbst C, Bellstedt P, Görlach M, Ramachandran R
Abstract
The generation of efficient RN n (?)s,(?)k symmetry-based low-power RF pulse schemes for simultaneous (15)N-(13)CA and (15)N-(13)CO dipolar recoupling...
nmrlearner
Journal club
0
02-26-2015 11:11 PM
MAS solid state NMR of proteins: simultaneous 15 Nâ?? 13 CA and 15 Nâ?? 13 CO dipolar recoupling via low-power symmetry-based RF pulse schemes
MAS solid state NMR of proteins: simultaneous 15 Nâ?? 13 CA and 15 Nâ?? 13 CO dipolar recoupling via low-power symmetry-based RF pulse schemes
Abstract
The generation of efficient RN n νs,νk symmetry-based low-power RF pulse schemes for simultaneous 15Nâ??13CA and 15Nâ??13CO dipolar recoupling is demonstrated. The method involves mixing schemes employing phase and amplitude-modulated dual band-selective 180° pulses as basic â??Râ?? element and tailoring of the RF field-modulation...
nmrlearner
Journal club
0
02-25-2015 05:56 PM
[NMR paper] Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information.
Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information.
Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information.
J Biomol NMR. 2013 Apr 28;
Authors: Fritzsching KJ, Yang Y, Schmidt-Rohr K, Hong M
Abstract
We introduce a Python-based program that utilizes the large database of (13)C and (15)N chemical shifts in the Biological Magnetic...
nmrlearner
Journal club
0
04-30-2013 10:21 PM
[NMR paper] Designing Dipolar Recoupling and Decoupling Experiments for Biological Solid-State NMR Using Interleaved Continuous Wave and rf Pulse Irradiation.
Designing Dipolar Recoupling and Decoupling Experiments for Biological Solid-State NMR Using Interleaved Continuous Wave and rf Pulse Irradiation.
Designing Dipolar Recoupling and Decoupling Experiments for Biological Solid-State NMR Using Interleaved Continuous Wave and rf Pulse Irradiation.
Acc Chem Res. 2013 Apr 4;
Authors: Bjerring M, Jain S, Paaske B, Vinther JM, Nielsen NC
Abstract
Rapid developments in solid-state NMR methodologyhave boosted this technique into a highly versatile tool for structural biology. The invention of...
nmrlearner
Journal club
0
04-06-2013 11:18 AM
Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N–15N and carbonyl 13C–13C dipolar recoupling data
Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N–15N and carbonyl 13C–13C dipolar recoupling data
May 2012
Publication year: 2012
Source:Journal of Magnetic Resonance, Volume 218</br>
</br>
Recent structural studies of uniformly 15N, 13C-labeled proteins by solid state nuclear magnetic resonance (NMR) rely principally on two sources of structural restraints: (i) restraints on backbone conformation from isotropic 15N and 13C chemical shifts, based on empirical correlations between chemical shifts and...
nmrlearner
Journal club
0
02-03-2013 10:13 AM
Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N-15N and carbonyl 13C-13C dipolar recoupling data
Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N-15N and carbonyl 13C-13C dipolar recoupling data
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
Kan-Nian Hu, Wei Qiang, Guillermo A. Bermejo, Charles D. Schwieters, Robert Tycko</br>
Recent structural studies of uniformly 15N,13C-labeled proteins by solid state nuclear magnetic resonance (NMR) rely principally on two sources of structural restraints: (i) restraints on backbone conformation from isotropic 15N and 13C chemical...
nmrlearner
Journal club
0
03-10-2012 10:54 AM
Broadband Heteronuclear Solid-State NMR Experiments by Exponentially Modulated Dipola
Broadband Heteronuclear Solid-State NMR Experiments by Exponentially Modulated Dipolar Recoupling without Decoupling.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc-MS.gif Related Articles Broadband Heteronuclear Solid-State NMR Experiments by Exponentially Modulated Dipolar Recoupling without Decoupling.
J Phys Chem Lett. 2010 Jun 1;1(13):1952-1956
Authors: Nielsen AB, Straasø LA, Nieuwkoop AJ, Rienstra CM, Bjerring M, Nielsen NC
We present a novel solid-state NMR method for...