Related ArticlesA Genetically Encoded ?-Lactamase Reporter for Ultrasensitive (129) Xe NMR in Mammalian Cells.
Angew Chem Int Ed Engl. 2016 Jun 15;
Authors: Wang Y, Roose BW, Palovcak EJ, Carnevale V, Dmochowski IJ
Abstract
Molecular imaging holds considerable promise for elucidating biological processes in normal physiology as well as disease states, but requires noninvasive methods for identifying analytes at sub-micromolar concentrations. Particularly useful are genetically encoded, single-protein reporters that harness the power of molecular biology to visualize specific molecular processes, but such reporters have been conspicuously lacking for in vivo magnetic resonance imaging (MRI). Herein, we report TEM-1 ?-lactamase (bla) as a single-protein reporter for hyperpolarized (HP) (129) Xe NMR, with significant saturation contrast at 0.1 ?m. Xenon chemical exchange saturation transfer (CEST) interactions with the primary allosteric site in bla give rise to a unique saturation peak at 255 ppm, well removed (?60 ppm downfield) from the (129) Xe-H2 O peak. Useful saturation contrast was also observed for bla expressed in bacterial cells and mammalian cells.
PMID: 27305488 [PubMed - as supplied by publisher]
[NMR paper] Characterization of proteins by in-cell NMR spectroscopy in cultured mammalian cells.
Characterization of proteins by in-cell NMR spectroscopy in cultured mammalian cells.
Characterization of proteins by in-cell NMR spectroscopy in cultured mammalian cells.
Nat Protoc. 2016 Jun;11(6):1101-1111
Authors: Barbieri L, Luchinat E, Banci L
Abstract
nmrlearner
Journal club
0
05-20-2016 03:04 PM
[NMR paper] Algal autolysate medium to label proteins for NMR in mammalian cells.
Algal autolysate medium to label proteins for NMR in mammalian cells.
Related Articles Algal autolysate medium to label proteins for NMR in mammalian cells.
J Biomol NMR. 2016 Apr 22;
Authors: Fuccio C, Luchinat E, Barbieri L, Neri S, Fragai M
Abstract
In-cell NMR provides structural and functional information on proteins directly inside living cells. At present, the high costs of the labeled media for mammalian cells represent a limiting factor for the development of this methodology. Here we report a protocol to prepare a...
nmrlearner
Journal club
0
04-24-2016 10:29 PM
Algal autolysate medium to label proteins for NMR in mammalian cells
Algal autolysate medium to label proteins for NMR in mammalian cells
Abstract
In-cell NMR provides structural and functional information on proteins directly inside living cells. At present, the high costs of the labeled media for mammalian cells represent a limiting factor for the development of this methodology. Here we report a protocol to prepare a homemade growth medium from Spirulina platensis autolysate, suitable to express uniformly labeled proteins inside mammalian cells at a reduced cost-per-sample. The human proteins SOD1 and Mia40 were...
nmrlearner
Journal club
0
04-22-2016 08:45 PM
[NMR paper] Fluorine NMR-based assay in living mammalian cells.
Fluorine NMR-based assay in living mammalian cells.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Fluorine NMR-based assay in living mammalian cells.
Anal Biochem. 2015 Dec 11;
Authors: Veronesi M, Giacomina F, Romeo E, Castellani B, Ottonello G, Lambruschini C, Garau G, Scarpelli R, Bandiera T, Piomelli D, Dalvit C
Abstract
Nuclear Magnetic Resonance (NMR)-based screening has been recognized as a powerful approach for the identification...
nmrlearner
Journal club
0
12-28-2015 12:26 AM
[NMR paper] Real-Time Monitoring of New Delhi Metallo-?-Lactamase Activity in Living Bacterial Cells by (1) H NMR Spectroscopy.
Real-Time Monitoring of New Delhi Metallo-?-Lactamase Activity in Living Bacterial Cells by (1) H NMR Spectroscopy.
Related Articles Real-Time Monitoring of New Delhi Metallo-?-Lactamase Activity in Living Bacterial Cells by (1) H NMR Spectroscopy.
Angew Chem Int Ed Engl. 2014 Jan 23;
Authors: Ma J, McLeod S, Maccormack K, Sriram S, Gao N, Breeze AL, Hu J
Abstract
Disconnections between in vitro responses and those observed in whole cells confound many attempts to design drugs in areas of serious medical need. A method based on 1D (1) H...
nmrlearner
Journal club
0
01-25-2014 02:07 PM
[NMR paper] A Genetically Encoded 19 F NMR Probe for Tyrosine Phosphorylation.
A Genetically Encoded 19 F NMR Probe for Tyrosine Phosphorylation.
A Genetically Encoded 19 F NMR Probe for Tyrosine Phosphorylation.
Angew Chem Int Ed Engl. 2013 Feb 28;
Authors: Li F, Shi P, Li J, Yang F, Wang T, Zhang W, Gao F, Ding W, Li D, Li J, Xiong Y, Sun J, Gong W, Tian C, Wang J
Abstract
Simple and selective: Tyrosine phosphorylation is a pivotal post-translational modification which regulates the enzymatic activity, protein conformation, and protein-protein interactions. The highly efficient genetic incorporation of...
nmrlearner
Journal club
0
03-02-2013 11:45 AM
Generation of Pseudocontact Shifts in Protein NMR Spectra with a Genetically Encoded Cobalt(II)-Binding Amino Acid.
Generation of Pseudocontact Shifts in Protein NMR Spectra with a Genetically Encoded Cobalt(II)-Binding Amino Acid.
Generation of Pseudocontact Shifts in Protein NMR Spectra with a Genetically Encoded Cobalt(II)-Binding Amino Acid.
Angew Chem Int Ed Engl. 2011 Jan 17;50(3):692-4
Authors: Nguyen TH, Ozawa K, Stanton-Cook M, Barrow R, Huber T, Otting G
nmrlearner
Journal club
0
01-13-2011 12:00 PM
Generation of Pseudocontact Shifts in Protein NMR Spectra with a Genetically Encoded
Generation of Pseudocontact Shifts in Protein NMR Spectra with a Genetically Encoded Cobalt(II)-Binding Amino Acid.
Related Articles Generation of Pseudocontact Shifts in Protein NMR Spectra with a Genetically Encoded Cobalt(II)-Binding Amino Acid.
Angew Chem Int Ed Engl. 2010 Nov 25;
Authors: Nguyen TH, Ozawa K, Stanton-Cook M, Barrow R, Huber T, Otting G