BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2010, 11:53 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,785
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default A general method for assigning NMR spectra of denatured proteins using 3D HC(CO)NH-TO

A general method for assigning NMR spectra of denatured proteins using 3D HC(CO)NH-TOCSY triple resonance experiments.

Related Articles A general method for assigning NMR spectra of denatured proteins using 3D HC(CO)NH-TOCSY triple resonance experiments.

J Biomol NMR. 1993 Mar;3(2):225-31

Authors: Logan TM, Olejniczak ET, Xu RX, Fesik SW

A general approach for assigning the resonances of uniformly 15N- and 13C-labeled proteins in their unfolded state is presented. The assignment approach takes advantage of the spectral dispersion of the amide nitrogen chemical shifts in denatured proteins by correlating side chain and backbone carbon and proton frequencies with the amide resonances of the same and adjacent residues. The 1H resonances of the individual amino acid spin systems are correlated with their intraresidue amide in a 3D 15N-edited 1H,1H-TOCSY-HSQC experiment, which allows the spin systems to be assigned to amino acid type. The spin systems are then linked to the adjacent i-1 spin system using the 3D H(C)(CO)NH-TOCSY experiment. Complete 13C assignments are obtained from the 3D (H)C(CO)NH-TOCSY experiment. Unlike other methods for assigning denatured proteins, this approach does not require previous knowledge of the native state assignments or specific interconversion rates between the native and denatured forms. The strategy is demonstrated by assigning the 1H, 13C, and 15N resonances of the FK506 binding protein denatured in 6.3 M urea.

PMID: 8477187 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Uncovering symmetry-breaking vector and reliability order for assigning secondary structures of proteins from atomic NMR chemical shifts in amino acids
Uncovering symmetry-breaking vector and reliability order for assigning secondary structures of proteins from atomic NMR chemical shifts in amino acids Abstract Unravelling the complex correlation between chemical shifts of 13 C α, 13 C β, 13 C�, 1 H α, 15 N, 1 H N atoms in amino acids of proteins from NMR experiment and local structural environments of amino acids facilitates the assignment of secondary structures of proteins. This is an important impetus for both determining the three-dimensional structure and understanding the biological function of proteins. The previous...
nmrlearner Journal club 0 11-14-2011 08:45 AM
Engineering [Ln(DPA)3]3â?? binding sites in proteins: a widely applicable method for tagging proteins with lanthanide ions
Engineering 3â?? binding sites in proteins: a widely applicable method for tagging proteins with lanthanide ions Abstract Paramagnetic relaxation enhancements from unpaired electrons observed in nuclear magnetic resonance (NMR) spectra present powerful long-range distance restraints. The most frequently used paramagnetic tags, however, are tethered to the protein via disulfide bonds, requiring proteins with single cysteine residues for covalent attachment. Here we present a straightforward strategy to tag proteins site-specifically with paramagnetic lanthanides without a tether and...
nmrlearner Journal club 0 07-26-2011 11:11 AM
A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field.
A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field. A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field. J Magn Reson. 2011 Jan 21; Authors: Lu GJ, Son WS, Opella SJ A general method for assigning...
nmrlearner Journal club 0 02-15-2011 07:17 PM
A General Assignment Method for Oriented Sample (OS) Solid-state NMR of Proteins Based on The Correlation of Resonances through Heteronuclear Dipolar Couplings in Samples Aligned Parallel and Perpendicular to the Magnetic Field
A General Assignment Method for Oriented Sample (OS) Solid-state NMR of Proteins Based on The Correlation of Resonances through Heteronuclear Dipolar Couplings in Samples Aligned Parallel and Perpendicular to the Magnetic Field Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 21 January 2011</br> George J., Lu , Woo Sung, Son , Stanley J., Opella</br> A general method for assigning oriented sample (OS) solid-state NMR spectra of proteins is demonstrated. In principle, this method requires only a single sample of a...
nmrlearner Journal club 0 01-22-2011 03:52 PM
[NMR paper] A general NMR method for rapid, efficient, and reliable biochemical screening.
A general NMR method for rapid, efficient, and reliable biochemical screening. Related Articles A general NMR method for rapid, efficient, and reliable biochemical screening. J Am Chem Soc. 2003 Nov 26;125(47):14620-5 Authors: Dalvit C, Ardini E, Flocco M, Fogliatto GP, Mongelli N, Veronesi M High-throughput screening is usually the method of drug-lead discovery. It is now well accepted that, for a functional assay, quality is more important than quantity. The ligand-based or protein-based NMR screening methodologies for detecting compounds...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] A general method for determining the electron self-exchange rates of blue copper prot
A general method for determining the electron self-exchange rates of blue copper proteins by longitudinal NMR relaxation. Related Articles A general method for determining the electron self-exchange rates of blue copper proteins by longitudinal NMR relaxation. J Am Chem Soc. 2002 Apr 17;124(15):4093-6 Authors: Jensen MR, Hansen DF, Led JJ A general NMR method is presented that allows a precise determination of the second-order rate constant, k(ese), for the electron self-exchange in blue copper proteins, from the longitudinal relaxation...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Assigning the NMR spectra of aromatic amino acids in proteins: analysis of two Ets po
Assigning the NMR spectra of aromatic amino acids in proteins: analysis of two Ets pointed domains. Related Articles Assigning the NMR spectra of aromatic amino acids in proteins: analysis of two Ets pointed domains. Biochem Cell Biol. 1998;76(2-3):379-90 Authors: Slupsky CM, Gentile LN, McIntosh LP The measurement of interproton nuclear Overhauser enhancements (NOEs) and dihedral angle restraints of aromatic amino acids is a critical step towards determining the structure of a protein. The complete assignment of the resonances from aromatic...
nmrlearner Journal club 0 11-17-2010 11:06 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:43 AM.


Map