BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-24-2010, 08:49 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default General framework for studying the dynamics of folded and nonfolded proteins by NMR r

General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation.

Related Articles General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation.

J Am Chem Soc. 2002 Apr 24;124(16):4522-34

Authors: Prompers JJ, Brüschweiler R

A general framework is presented for the interpretation of NMR relaxation data of proteins. The method, termed isotropic reorientational eigenmode dynamics (iRED), relies on a principal component analysis of the isotropically averaged covariance matrix of the lattice functions of the spin interactions responsible for spin relaxation. The covariance matrix, which is evaluated using a molecular dynamics (MD) simulation, is diagonalized yielding reorientational eigenmodes and amplitudes that reveal detailed information about correlated protein dynamics. The eigenvalue distribution allows one to quantitatively assess whether overall and internal motions are statistically separable. To each eigenmode belongs a correlation time that can be adjusted to optimally reproduce experimental relaxation parameters. A key feature of the method is that it does not require separability of overall tumbling and internal motions, which makes it applicable to a wide range of systems, such as folded, partially folded, and unfolded biomolecular systems and other macromolecules in solution. The approach was applied to NMR relaxation data of ubiquitin collected at multiple magnetic fields in the native form and in the partially folded A-state using MD trajectories with lengths of 6 and 70 ns. The relaxation data of native ubiquitin are well reproduced after adjustment of the correlation times of the 10 largest eigenmodes. For this state, a high degree of separability between internal and overall motions is present as is reflected in large amplitude and collectivity gaps between internal and overall reorientational modes. In contrast, no such separability exists for the A-state. Residual overall tumbling motion involving the N-terminal beta-sheet and the central helix is observed for two of the largest modes only. By adjusting the correlation times of the 10 largest modes, a high degree of consistency between the experimental relaxation data and the iRED model is reached for this highly flexible biomolecule.

PMID: 11960483 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
The Use of Residual Dipolar Coupling in Studying Proteins by NMR.
The Use of Residual Dipolar Coupling in Studying Proteins by NMR. The Use of Residual Dipolar Coupling in Studying Proteins by NMR. Top Curr Chem. 2011 Sep 28; Authors: Chen K, Tjandra N Abstract The development of residual dipolar coupling (RDC) in protein NMR spectroscopy, over a decade ago, has become a useful and almost routine tool for accurate protein solution structure determination. RDCs provide orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. Its measurement requires a...
nmrlearner Journal club 0 09-30-2011 06:00 AM
The Use of Residual Dipolar Coupling in Studying Proteins by NMR.
The Use of Residual Dipolar Coupling in Studying Proteins by NMR. The Use of Residual Dipolar Coupling in Studying Proteins by NMR. Top Curr Chem. 2011 Sep 28; Authors: Chen K, Tjandra N Abstract The development of residual dipolar coupling (RDC) in protein NMR spectroscopy, over a decade ago, has become a useful and almost routine tool for accurate protein solution structure determination. RDCs provide orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. Its measurement requires a...
nmrlearner Journal club 0 09-30-2011 05:59 AM
[NMR paper] Studying excited states of proteins by NMR spectroscopy.
Studying excited states of proteins by NMR spectroscopy. Related Articles Studying excited states of proteins by NMR spectroscopy. Nat Struct Biol. 2001 Nov;8(11):932-5 Authors: Mulder FA, Mittermaier A, Hon B, Dahlquist FW, Kay LE Protein structure is inherently dynamic, with function often predicated on excursions from low to higher energy conformations. For example, X-ray studies of a cavity mutant of T4 lysozyme, L99A, show that the cavity is sterically inaccessible to ligand, yet the protein is able to bind substituted benzenes rapidly....
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] Chemical ligation of folded recombinant proteins: segmental isotopic labeling of doma
Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Related Articles Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):388-93 Authors: Xu R, Ayers B, Cowburn D, Muir TW A convenient in vitro chemical ligation strategy has been developed that allows folded recombinant proteins to be joined together. This strategy permits segmental, selective isotopic labeling of the product. The src homology...
nmrlearner Journal club 0 11-18-2010 07:05 PM
[NMR paper] Main-chain dynamics of a partially folded protein: 15N NMR relaxation measurements of
Main-chain dynamics of a partially folded protein: 15N NMR relaxation measurements of hen egg white lysozyme denatured in trifluoroethanol. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Main-chain dynamics of a partially folded protein: 15N NMR relaxation measurements of hen egg white lysozyme denatured in trifluoroethanol. J Mol Biol. 1996 Apr 5;257(3):669-83 Authors: Buck M, Schwalbe H, Dobson CM 15N NMR relaxation measurements have been used to study the dynamic...
nmrlearner Journal club 0 08-22-2010 02:27 PM
[NMR paper] A general method for assigning NMR spectra of denatured proteins using 3D HC(CO)NH-TO
A general method for assigning NMR spectra of denatured proteins using 3D HC(CO)NH-TOCSY triple resonance experiments. Related Articles A general method for assigning NMR spectra of denatured proteins using 3D HC(CO)NH-TOCSY triple resonance experiments. J Biomol NMR. 1993 Mar;3(2):225-31 Authors: Logan TM, Olejniczak ET, Xu RX, Fesik SW A general approach for assigning the resonances of uniformly 15N- and 13C-labeled proteins in their unfolded state is presented. The assignment approach takes advantage of the spectral dispersion of the amide...
nmrlearner Journal club 0 08-21-2010 11:53 PM
Theoretical framework for NMR residual dipolar couplings in unfolded proteins
Theoretical framework for NMR residual dipolar couplings in unfolded proteins O. I. Obolensky, Kai Schlepckow, Harald Schwalbe and A. V. Solov’yov Journal of Biomolecular NMR; 2007; 39(1) pp 1-16 Abstract: A theoretical framework for the prediction of nuclear magnetic resonance (NMR) residual dipolar couplings (RDCs) in unfolded proteins under weakly aligning conditions is presented. The unfolded polypeptide chain is modeled as a random flight chain while the alignment medium is represented by a set of regularly arranged obstacles. For the case of bicelles oriented perpendicular to...
stewart Journal club 0 08-05-2008 02:26 AM
2H NMR Spin Relaxation for studying RNA dynamics
A Suite of 2H NMR Spin Relaxation Experiments for the Measurement of RNA Dynamics Pramodh Vallurupalli and Lewis E. Kay, J. Am. Chem. Soc.; 2005; 127 (18) pp 6893 - 6901 ABSTRACT: A suite of (2)H-based spin relaxation NMR experiments is presented for the measurement of molecular dynamics in a site-specific manner in uniformly (13)C, randomly fractionally deuterated ( approximately 50%) RNA molecules. The experiments quantify (2)H R(1) and R(2) relaxation rates that can subsequently be analyzed to obtain information about dynamics on a pico- to nanosecond time scale. Sensitivity...
nmrlearner Journal club 0 05-19-2005 08:44 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:42 PM.


Map