Related ArticlesG-matrix Fourier transform NMR spectroscopy for complete protein resonance assignment.
Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9642-7
Authors: Atreya HS, Szyperski T
A G-matrix Fourier transform (GFT) NMR spectroscopy-based strategy for resonance assignment of proteins is described. Each of the GFT NMR experiments presented here rapidly affords four-, five-, or six-dimensional spectral information in combination with precise measurements of chemical shifts. The resulting high information content enables one to obtain nearly complete assignments by using only four NMR experiments. For the backbone amide proton detected "out-and-back" experiments, data collection was further accelerated up to approximately 2.5-fold by use of longitudinal (1)H relaxation optimization. The GFT NMR experiments were acquired for three proteins with molecular masses ranging from 8.6 to 17 kDa, demonstrating that the proposed strategy is of key interest for automated resonance assignment in structural genomics.
[NMR paper] The basic subdomain of the c-Jun oncoprotein. A joint CD, Fourier-transform infrared
The basic subdomain of the c-Jun oncoprotein. A joint CD, Fourier-transform infrared and NMR study.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles The basic subdomain of the c-Jun oncoprotein. A joint CD, Fourier-transform infrared and NMR study.
Eur J Biochem. 1995 Jul 15;231(2):370-80
Authors: Krebs D, Dahmani B, el Antri S, Monnot M, Convert O, Mauffret O, Troalen F, Fermandjian S
The structural properties of the basic...
nmrlearner
Journal club
0
08-22-2010 03:50 AM
Iterative algorithm of discrete Fourier transform for processing randomly sampled NMR
Abstract Spectra obtained by application of multidimensional Fourier Transformation (MFT) to sparsely sampled nD NMR signals are usually corrupted due to missing data. In the present paper this phenomenon is investigated on simulations and experiments. An effective iterative algorithm for artifact suppression for sparse on-grid NMR data sets is discussed in detail. It includes automated peak recognition based on statistical methods. The results enable one to study NMR spectra of high dynamic range of peak intensities preserving benefits of random sampling, namely the superior resolution in...