BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-29-2015, 01:24 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Frontispiece: Labeling Strategy and Signal Broadening Mechanism of Protein NMR Spectroscopy in Xenopus laevis Oocytes.

Frontispiece: Labeling Strategy and Signal Broadening Mechanism of Protein NMR Spectroscopy in Xenopus laevis Oocytes.

Related Articles Frontispiece: Labeling Strategy and Signal Broadening Mechanism of Protein NMR Spectroscopy in Xenopus laevis Oocytes.

Chemistry. 2015 Jun 8;21(24)

Authors: Ye Y, Liu X, Chen Y, Xu G, Wu Q, Zhang Z, Yao C, Liu M, Li C

Abstract
NMR Spectroscopy In their Communication on page 8686 ff., C. Li et al., demonstrate that (19) F labeling is a good first choice for studying globular and disordered proteins in Xenopus oocytes, especially compared with conventional (15) N- or (13) C-methyl enrichment. By using (19) F labeling, they found that, unlike E. coli cells, the viscosity in oocytes is only about 1.2 times that of water and that inhomogeneous broadening contributes 60-70 % to the line width. The labeling strategies and resonance broadening mechanisms in Xenopus oocytes were explored with the goal of expanding the application of this cell type.


PMID: 26017161 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Labeling Strategy and Signal Broadening Mechanism of Protein NMR Spectroscopy in Xenopus laevis Oocytes.
Labeling Strategy and Signal Broadening Mechanism of Protein NMR Spectroscopy in Xenopus laevis Oocytes. Labeling Strategy and Signal Broadening Mechanism of Protein NMR Spectroscopy in Xenopus laevis Oocytes. Chemistry. 2015 May 12; Authors: Ye Y, Liu X, Chen Y, Xu G, Wu Q, Zhang Z, Yao C, Liu M, Li C Abstract We used Xenopus laevis oocytes, a paradigm for a variety of biological studies, as a eukaryotic model system for in-cell protein NMR spectroscopy. The small globular protein GB1 was one of the first studied in...
nmrlearner Journal club 0 05-13-2015 02:01 PM
[NMR paper] Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling.
Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.plosone.org-images-pone_120x30.png Related Articles Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling. PLoS One. 2015;10(4):e0122714 Authors: Wang S, Parthasarathy S, Nishiyama Y, Endo Y, Nemoto T, Yamauchi K, Asakura T,...
nmrlearner Journal club 0 04-11-2015 12:04 AM
[NMR paper] Direct Observation of Ca(2+) -Induced Calmodulin Conformational Transitions in Intact Xenopus laevis Oocytes by (19) F NMR Spectroscopy.
Direct Observation of Ca(2+) -Induced Calmodulin Conformational Transitions in Intact Xenopus laevis Oocytes by (19) F NMR Spectroscopy. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary_FullTextOnline_120x27.gif Related Articles Direct Observation of Ca(2+) -Induced Calmodulin Conformational Transitions in Intact Xenopus laevis Oocytes by (19) F NMR Spectroscopy. Angew Chem Int Ed Engl. 2015 Mar 5; Authors: Ye Y, Liu X, Xu G, Liu M, Li C Abstract The...
nmrlearner Journal club 0 03-11-2015 09:59 PM
[NMR paper] Frontispiece: probing transient conformational States of proteins by solid-state r1? relaxation-dispersion NMR spectroscopy.
Frontispiece: probing transient conformational States of proteins by solid-state r1? relaxation-dispersion NMR spectroscopy. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Frontispiece: probing transient conformational States of proteins by solid-state r1? relaxation-dispersion NMR spectroscopy. Angew Chem Int Ed Engl. 2014 Apr 22;53(17) Authors: Ma P, Haller JD, Zajakala J, Macek P, Sivertsen AC, Willbold D, Boisbouvier J,...
nmrlearner Journal club 0 04-23-2014 06:31 PM
[NMR paper] NMR assignment of the Xenopus laevis prion protein fragment xlPrP (98-226).
NMR assignment of the Xenopus laevis prion protein fragment xlPrP (98-226). Related Articles NMR assignment of the Xenopus laevis prion protein fragment xlPrP (98-226). J Biomol NMR. 2005 Mar;31(3):260 Authors: Pérez DR, Wüthrich K
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Differential isotype labeling strategy for determining the structure of myristoylated
Differential isotype labeling strategy for determining the structure of myristoylated recoverin by NMR spectroscopy. Related Articles Differential isotype labeling strategy for determining the structure of myristoylated recoverin by NMR spectroscopy. J Biomol NMR. 1998 Feb;11(2):135-52 Authors: Tanaka T, Ames JB, Kainosho M, Stryer L, Ikura M The three-dimensional solution structure of recombinant bovine myristoylated recoverin in the Ca(2+)-free state has been refined using an array of isotope-assisted multidimensional heteronuclear NMR...
nmrlearner Journal club 0 11-17-2010 11:06 PM
A simple strategy for 13C,1H labeling at the Ile-γ2 methyl position in highly deuter
A simple strategy for 13C,1H labeling at the Ile-γ2 methyl position in highly deuterated proteins Abstract A straightforward approach for the production of highly deuterated proteins labeled with 13C and 1H at Ile-γ2 methyl positions is described. The utility of the methodology is illustrated with an application involving the half proteasome (360 kDa). High quality 2D Ile 13Cγ2,1Hγ2 HMQC data sets, exploiting the methyl-TROSY principle, are recorded with excellent sensitivity and resolution, that compare favorably with Ile 13Cδ1,1Hδ1 spectra. This labeling scheme adds to a growing...
nmrlearner Journal club 0 10-20-2010 06:50 AM
[NMR paper] Labeling of recombinant protein for NMR spectroscopy: global and specific labeling of
Labeling of recombinant protein for NMR spectroscopy: global and specific labeling of the rat liver fructose 2,6-bisphosphatase domain. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Labeling of recombinant protein for NMR spectroscopy: global and specific labeling of the rat liver fructose 2,6-bisphosphatase domain. Protein Expr Purif. 1997 Oct;11(1):79-85 Authors: Okar DA, Felicia ND, Gui L, Lange AJ Methods for the efficient use of the 13C-labeled nutrients,...
nmrlearner Journal club 0 08-22-2010 05:08 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:48 PM.


Map