Related ArticlesFour-dimensional NMR spectroscopy of a 723-residue protein: chemical shift assignments and secondary structure of malate synthase g.
J Am Chem Soc. 2002 Aug 28;124(34):10025-35
Authors: Tugarinov V, Muhandiram R, Ayed A, Kay LE
A four-dimensional (4-D) NMR study of Escherichia coli malate synthase G (MSG), a 723-residue monomeric enzyme (81.4 kDa), is described. Virtually complete backbone (1)HN, (15)N, (13)C, and (13)C(beta) chemical shift assignments of this largely alpha-helical protein are reported. The assignment strategy follows from our previously described approach based on TROSY triple resonance 4-D NMR spectroscopy [Yang, D.; Kay, L. E. J. Am. Chem. Soc. 1999, 121, 2571-2575. Konrat, R; Yang, D; Kay, L. E. J. Biomol. NMR 1999, 15, 309-313] with a number of modifications necessitated by the large size of the protein. A protocol for refolding deuterated MSG in vitro was developed to protonate the amides deeply buried in the protein core. Of interest, during the course of the assignment, an isoaspartyl linkage in the protein sequence was unambiguously identified. Chemical shift assignments of this system are a first step in the study of how the domains of the protein change in response to ligand binding and for characterizing the dynamical properties of the enzyme that are likely important for function.
Two-dimensional concurrent HMQC-COSY as an approach for small molecule chemical shift assignment and compound identification
Two-dimensional concurrent HMQC-COSY as an approach for small molecule chemical shift assignment and compound identification
Abstract Chemical shift assignment is the first step toward the structure elucidation of natural products and other chemical compounds. We propose here the use of 2D concurrent HMQC-COSY as an experiment for rapid chemical shift assignment of small molecules. This experiment provides well-dispersed 1Hâ??13C peak patterns that are distinctive for different functional groups plus 1Hâ??1H COSY connectivities that serve to identify adjacent groups. The COSY diagonal...
[NMR paper] Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis.
Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis.
Related Articles Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis.
J Am Chem Soc. 2005 Sep 7;127(35):12291-305
Authors: Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM
Magic-angle spinning...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Site-specific 13C chemical shift anisotropy measurements in a uniformly 15N,13C-labeled microcrystalline protein by 3D magic-angle spinning NMR spectroscopy.
Site-specific 13C chemical shift anisotropy measurements in a uniformly 15N,13C-labeled microcrystalline protein by 3D magic-angle spinning NMR spectroscopy.
Related Articles Site-specific 13C chemical shift anisotropy measurements in a uniformly 15N,13C-labeled microcrystalline protein by 3D magic-angle spinning NMR spectroscopy.
J Am Chem Soc. 2005 Aug 31;127(34):11946-7
Authors: Wylie BJ, Franks WT, Graesser DT, Rienstra CM
In this Communication, we introduce a 3D magic-angle spinning recoupling experiment that correlates chemical shift...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Selective chemical shift assignment of B800 and B850 bacteriochlorophylls in uniforml
Selective chemical shift assignment of B800 and B850 bacteriochlorophylls in uniformly -labeled light-harvesting complexes by solid-state NMR spectroscopy at ultra-high magnetic field.
Related Articles Selective chemical shift assignment of B800 and B850 bacteriochlorophylls in uniformly -labeled light-harvesting complexes by solid-state NMR spectroscopy at ultra-high magnetic field.
J Am Chem Soc. 2005 Mar 9;127(9):3213-9
Authors: van Gammeren AJ, Buda F, Hulsbergen FB, Kiihne S, Hollander JG, Egorova-Zachernyuk TA, Fraser NJ, Cogdell RJ, de Groot HJ
...
nmrlearner
Journal club
0
11-24-2010 11:14 PM
[NMR paper] Proline-directed random-coil chemical shift values as a tool for the NMR assignment o
Proline-directed random-coil chemical shift values as a tool for the NMR assignment of the tau phosphorylation sites.
Related Articles Proline-directed random-coil chemical shift values as a tool for the NMR assignment of the tau phosphorylation sites.
Chembiochem. 2004 Jan 3;5(1):73-8
Authors: Lippens G, Wieruszeski JM, Leroy A, Smet C, Sillen A, Buée L, Landrieu I
NMR spectroscopy of the full-length neuronal Tau protein has proved to be difficult due to the length of the protein and the unfavorable amino acid composition. We show that the...
nmrlearner
Journal club
0
11-24-2010 09:25 PM
[NMR paper] The chemical shift index: a fast and simple method for the assignment of protein seco
The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy.
Related Articles The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy.
Biochemistry. 1992 Feb 18;31(6):1647-51
Authors: Wishart DS, Sykes BD, Richards FM
Previous studies by Wishart et al. have demonstrated that 1H NMR chemical shifts are strongly dependent on the character and nature of protein secondary structure. In particular, it has been...
nmrlearner
Journal club
0
08-21-2010 11:41 PM
Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins
Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins
W. Trent Franks, Kathryn D. Kloepper, Benjamin J. Wylie and Chad M. Rienstra
Journal of Biomolecular NMR; 2007; 39(2); pp 107 - 131
Abstract:
Chemical shift assignment is the first step in all established protocols for structure determination of uniformly labeled proteins by NMR. The explosive growth in recent years of magic-angle spinning (MAS) solid-state NMR (SSNMR) applications is largely attributable to improved methods for backbone and side-chain chemical shift correlation...