BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2010, 11:04 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Four-dimensional heteronuclear triple-resonance NMR spectroscopy of interleukin-1 bet

Four-dimensional heteronuclear triple-resonance NMR spectroscopy of interleukin-1 beta in solution.

Related Articles Four-dimensional heteronuclear triple-resonance NMR spectroscopy of interleukin-1 beta in solution.

Science. 1990 Jul 27;249(4967):411-4

Authors: Kay LE, Clore GM, Bax A, Gronenborn AM

A method is presented that dramatically improves the resolution of protein nuclear magnetic resonance (NMR) spectra by increasing their dimensionality to four. The power of this technique is demonstrated by the application of four-dimensional carbon-13--nitrogen-15 (13C-15N)--edited nuclear Overhauser effect (NOE) spectroscopy to interleukin-1 beta, a protein of 153 residues. The NOEs between NH and aliphatic protons are first spread out into a third dimension by the 15N chemical shift of the amide 15N atom and subsequently into a fourth dimension by the 13C chemical shift of the directly bonded 13C atoms. By this means ambiguities in the assignment of NOEs between NH and aliphatic protons that are still present in the three-dimensional 15N-edited NOE spectrum due to extensive chemical shift overlap and degeneracy of aliphatic resonances are completely removed. Consequently, many more approximate interproton distance restraints can be obtained from the NOE data than was heretofore possible, thereby expanding the horizons of three-dimensional structure determination by NMR to larger proteins.

PMID: 2377896 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Three-dimensional triple-resonance NMR Spectroscopy of isotopically enriched proteins
Three-dimensional triple-resonance NMR Spectroscopy of isotopically enriched proteins Publication year: 2011 Source: Journal of Magnetic Resonance, Volume 213, Issue 2, December 2011, Pages 423-441</br> Lewis E.*Kay, Mitsuhiko*Ikura, Rolf*Tschudin, Ad*Bax</br> Four new and complementary three-dimensional triple-resonance experiments are described for obtaining complete backboneH,C, andN resonance assignments of proteins uniformly enriched withC andN. The new methods all rely onH detection and use multiple magnetization transfers through well-resolved one-bondJcouplings. Therefore, the...
nmrlearner Journal club 0 12-11-2011 07:57 AM
Triple resonance three-dimensional protein NMR: Before it became a black box.
Triple resonance three-dimensional protein NMR: Before it became a black box. Triple resonance three-dimensional protein NMR: Before it became a black box. J Magn Reson. 2011 Aug 30; Authors: Bax A Abstract Three-dimensional triple resonance experiments have become an integral part of virtually every solution NMR study of proteins. The approach relies on uniform isotopic enrichment of proteins with (13)C and (15)N, and establishes the scalar connectivity pathway between nuclei through the large (1)J(NH), (1)J(CH)(, 1)J(CC), and (1)J(CN)...
nmrlearner Journal club 0 09-03-2011 06:55 PM
Triple resonance three-dimensional protein NMR: Before it became a black box
Triple resonance three-dimensional protein NMR: Before it became a black box Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Corrected Proof, Available online 31 August 2011</br> Ad, Bax</br> Three-dimensional triple resonance experiments have become an integral part of virtually every solution NMR study of proteins. The approach relies on uniform isotopic enrichment of proteins with 13C and 15N, and establishes the scalar connectivity pathway between nuclei through the large 1JNH, 1JCH, 1JCC, and 1JCN couplings. The magnetization transfer process takes place...
nmrlearner Journal club 0 08-31-2011 07:12 PM
[NMR paper] Direct determination of the interleukin-6 binding epitope of the interleukin-6 recept
Direct determination of the interleukin-6 binding epitope of the interleukin-6 receptor by NMR spectroscopy. Related Articles Direct determination of the interleukin-6 binding epitope of the interleukin-6 receptor by NMR spectroscopy. J Biol Chem. 2004 Jan 2;279(1):571-6 Authors: Schwantner A, Dingley AJ, Ozbek S, Rose-John S, Grötzinger J All cytokines belonging to the interleukin-6 (IL-6)-type family of cytokines utilize receptors that have a modular build of several immunoglobulin-like and fibronectin type III-like domains. Characteristic...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Heteronuclear three-dimensional NMR spectroscopy of a partially denatured protein: th
Heteronuclear three-dimensional NMR spectroscopy of a partially denatured protein: the A-state of human ubiquitin. Related Articles Heteronuclear three-dimensional NMR spectroscopy of a partially denatured protein: the A-state of human ubiquitin. J Biomol NMR. 1993 May;3(3):285-96 Authors: Stockman BJ, Euvrard A, Scahill TA Human ubiquitin is a 76-residue protein that serves as a protein degradation signal when conjugated to another protein. Ubiquitin has been shown to exist in at least three states: native (N-state), unfolded (U-state), and,...
nmrlearner Journal club 0 08-21-2010 11:53 PM
[NMR paper] Secondary structure of human interleukin 2 from 3D heteronuclear NMR experiments.
Secondary structure of human interleukin 2 from 3D heteronuclear NMR experiments. Related Articles Secondary structure of human interleukin 2 from 3D heteronuclear NMR experiments. Biochemistry. 1992 Aug 25;31(33):7741-4 Authors: Mott HR, Driscoll PC, Boyd J, Cooke RM, Weir MP, Campbell ID Recombinant 15N-labeled human interleukin 2 (IL-2) has been studied by 2D and 3D NMR using uniformly 15N-labeled protein. Assignment of the backbone resonances has enabled the secondary structure of the protein to be defined. The secondary structure was...
nmrlearner Journal club 0 08-21-2010 11:45 PM
[NMR paper] Multidimensional triple resonance NMR spectroscopy of isotopically uniformly enriched
Multidimensional triple resonance NMR spectroscopy of isotopically uniformly enriched proteins: a powerful new strategy for structure determination. Related Articles Multidimensional triple resonance NMR spectroscopy of isotopically uniformly enriched proteins: a powerful new strategy for structure determination. Ciba Found Symp. 1991;161:108-19; discussion 119-35 Authors: Bax A, Ikura M, Kay LE, Barbato G, Spera S A procedure is described that affords complete 1H, 13C and 15N resonance assignment in proteins of up to about 25 kDa. The new...
nmrlearner Journal club 0 08-21-2010 11:16 PM
[NMR paper] Analysis of the backbone dynamics of interleukin-1 beta using two-dimensional inverse
Analysis of the backbone dynamics of interleukin-1 beta using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. Related Articles Analysis of the backbone dynamics of interleukin-1 beta using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. Biochemistry. 1990 Aug 14;29(32):7387-401 Authors: Clore GM, Driscoll PC, Wingfield PT, Gronenborn AM The backbone dynamics of uniformly 15N-labeled interleukin-1 beta are investigated by using two-dimensional inverse detected heteronuclear 15N-1H NMR...
nmrlearner Journal club 0 08-21-2010 11:04 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:21 AM.


Map