Related ArticlesFolding properties of an annexin I domain: a 1H-15N NMR and CD study.
Biochemistry. 1996 Aug 13;35(32):10347-57
Authors: Cordier-Ochsenbein F, Guerois R, Baleux F, Huynh-Dinh T, Chaffotte A, Neumann JM, Sanson A
The annexin fold consists of four 70-residue domains with markedly homologous sequences and nearly identical structures. Each domain contains five helices designated A to E. Domain 2 of annexin I was obtained by chemical synthesis including ten specifically labeled residues and studied by 1H-15N NMR and circular dichroism (CD). In pure aqueous solution this annexin domain presents, at most, 25% of residual helix secondary structure compared to 75%-85% for the native helix content and thus does not constitute an autonomous folding unit. Dodecylphosphocholine (DPC) micelles were used to provide the annexin domain with non-specific hydrophobic interactions. The structuring effect of micelles was thoroughly investigated by CD and 1H-15N NMR. Most, but not all, of the native helix secondary structure was recovered at DPC saturation. NMR data made it possible to determine the intrinsic helix propensity hierarchy of the different helix segments of the domain: A approximately B approximately E > C, D. This hierarchy is remarkably well correlated with the location of the helices in the native protein since A, B, and E helices are those in contact with the remaining parts of the protein. This result tends to support the view that, for large proteins like annexins (35 kDa), high intrinsic secondary structure propensities, at least helix propensity, in selected protein segments is necessary for a correct folding process. As a consequence this also indicates that important information concerning the folding pathway is encoded in the protein sequence.
Nonnative Interactions in the FF Domain Folding Pathway from an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study
Nonnative Interactions in the FF Domain Folding Pathway from an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study
Dmitry M. Korzhnev, Robert M. Vernon, Tomasz L. Religa, Alexandar L. Hansen, David Baker, Alan R. Fersht and Lewis E. Kay
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja203686t/aop/images/medium/ja-2011-03686t_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja203686t
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner
Journal club
0
06-29-2011 04:45 AM
Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study.
Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study.
Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study.
J Am Chem Soc. 2011 Jun 6;
Authors: Korzhnev DM, Vernon RM, Religa TL, Hansen AL, Baker D, Fersht AR, Kay LE
Several all-helical single-domain proteins have been shown to fold rapidly (us timescale) to a compact...
nmrlearner
Journal club
0
06-07-2011 11:05 AM
[NMR paper] Folding and domain-domain interactions of the chaperone PapD measured by 19F NMR.
Folding and domain-domain interactions of the chaperone PapD measured by 19F NMR.
Related Articles Folding and domain-domain interactions of the chaperone PapD measured by 19F NMR.
Biochemistry. 2004 Nov 2;43(43):13775-86
Authors: Bann JG, Frieden C
The folding of the two-domain bacterial chaperone PapD has been studied to develop an understanding of the relationship between individual domain folding and the formation of domain-domain interactions. PapD contains six phenylalanine residues, four in the N-terminal domain and two in the...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
[NMR paper] Solution 1H NMR study of the active site molecular structure and magnetic properties
Solution 1H NMR study of the active site molecular structure and magnetic properties of the cyanomet complex of the isolated, tetrameric beta-chain from human adult hemoglobin.
Related Articles Solution 1H NMR study of the active site molecular structure and magnetic properties of the cyanomet complex of the isolated, tetrameric beta-chain from human adult hemoglobin.
Biochim Biophys Acta. 2004 Sep 1;1701(1-2):75-87
Authors: Tran AT, Kolczak U, La Mar GN
The solution molecular structure and the electronic and magnetic properties of the heme...
nmrlearner
Journal club
0
11-24-2010 10:01 PM
[NMR paper] Interpretation of NMR relaxation properties of Pin1, a two-domain protein, based on B
Interpretation of NMR relaxation properties of Pin1, a two-domain protein, based on Brownian dynamic simulations.
Related Articles Interpretation of NMR relaxation properties of Pin1, a two-domain protein, based on Brownian dynamic simulations.
J Biomol NMR. 2004 May;29(1):21-35
Authors: Bernadó P, Fernandes MX, Jacobs DM, Fiebig K, García de la Torre J, Pons M
Many important proteins contain multiple domains connected by flexible linkers. Inter-domain motion is suggested to play a key role in many processes involving molecular recognition....
nmrlearner
Journal club
0
11-24-2010 09:51 PM
[NMR paper] Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optic
Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy.
Related Articles Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy.
J Mol Biol. 1998 Feb 27;276(3):657-67
Authors: Guijarro JI, Morton CJ, Plaxco KW, Campbell ID, Dobson CM
The refolding kinetics of the chemically denatured SH3 domain of phosphatidylinositol 3'-kinase (PI3-SH3) have been monitored by real-time one-dimensional 1H NMR coupled with a variety of other biophysical techniques. These...
nmrlearner
Journal club
0
11-17-2010 11:06 PM
[NMR paper] Temperature-jump NMR study of protein folding: ribonuclease A at low pH.
Temperature-jump NMR study of protein folding: ribonuclease A at low pH.
Related Articles Temperature-jump NMR study of protein folding: ribonuclease A at low pH.
J Biomol NMR. 1991 May;1(1):65-70
Authors: Akasaka K, Naito A, Nakatani H
The kinetic process of folding of bovine pancreatic ribonuclease A in a 2H2O environment at pH 1.2 was examined by a recently developed temperature-jump NMR method (Akasaka et al., (1990) Rev. Sci. Instrum. 61, 66-68). Upon temperature-jump down from 45 degrees C to 29 degrees C, which was attained within 6 s,...
nmrlearner
Journal club
0
08-21-2010 11:16 PM
[NMR paper] Proton NMR study of the comparative electronic/magnetic properties and dynamics of th
Proton NMR study of the comparative electronic/magnetic properties and dynamics of the acid in equilibrium with alkaline transition in a series of ferricytochromes c'.
Related Articles Proton NMR study of the comparative electronic/magnetic properties and dynamics of the acid in equilibrium with alkaline transition in a series of ferricytochromes c'.
J Biol Chem. 1990 Sep 25;265(27):16173-80
Authors: La Mar GN, Jackson JT, Dugad LB, Cusanovich MA, Bartsch RG
The proton NMR spectra of ferricytochrome c' from Rhodopseudomonas palustris,...