BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-14-2017, 06:24 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Folding of apomyoglobin: Analysis of transient intermediate structure during refolding using quick hydrogen deuterium exchange and NMR.

Folding of apomyoglobin: Analysis of transient intermediate structure during refolding using quick hydrogen deuterium exchange and NMR.

Related Articles Folding of apomyoglobin: Analysis of transient intermediate structure during refolding using quick hydrogen deuterium exchange and NMR.

Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(1):10-27

Authors: Nishimura C

Abstract
The structures of apomyoglobin folding intermediates have been widely analyzed using physical chemistry methods including fluorescence, circular dichroism, small angle X-ray scattering, NMR, mass spectrometry, and rapid mixing. So far, at least two intermediates (on sub-millisecond- and millisecond-scales) have been demonstrated for apomyoglobin folding. The combination of pH-pulse labeling and NMR is a useful tool for analyzing the kinetic intermediates at the atomic level. Its use has revealed that the latter-phase kinetic intermediate of apomyoglobin (6 ms) was composed of helices A, B, G and H, whereas the equilibrium intermediate, called the pH 4 molten-globule intermediate, was composed mainly of helices A, G and H. The improved strategy for the analysis of the kinetic intermediate was developed to include (1) the dimethyl sulfoxide method, (2) data processing with the various labeling times, and (3) a new in-house mixer. Particularly, the rapid mixing revealed that helices A and G were significantly more protected at the earlier stage (400 µs) of the intermediate (former-phase intermediate) than the other helices. Mutation studies, where each hydrophobic residue was replaced with an alanine in helices A, B, E, F, G and H, indicated that both non-native and native-like structures exist in the latter-phase folding intermediate. The N-terminal part of helix B is a weak point in the intermediate, and the docking of helix E residues to the core of the A, B, G and H helices was interrupted by a premature helix B, resulting in the accumulation of the intermediate composed of helices A, B, G and H. The prediction-based protein engineering produced important mutants: Helix F in a P88K/A90L/S92K/A94L mutant folded in the latter-phase intermediate, although helix F in the wild type does not fold even at the native state. Furthermore, in the L11G/W14G/A70L/G73W mutant, helix A did not fold but helix E did, which is similar to what was observed in the kinetic intermediate of apoleghemoglobin. Thus, this protein engineering resulted in a changed structure for the apomyoglobin folding intermediate.


PMID: 28077807 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] [Interactions between proteins and cation exchange adsorbents analyzed by NMR and hydrogen/deuterium exchange technique].
. . Sheng Wu Gong Cheng Xue Bao. 2014 Sep;30(9):1454-63 Authors: Wang K, Hao D, Qi S, Ma G Abstract In silico acquirement of the accurate residue details of protein on chromatographic media is a bottleneck in protein chromatography separation and purification. Here we developed a novel approach by coupling with H/D exchange and nuclear magnetic resonance to observe hen egg white lysozyme (HEWL) unfolding behavior adsorbed on cation exchange media (SP Sepharose FF). Analysis of 1D 1H-NMR shows that protein unfolding accelerated...
nmrlearner Journal club 0 03-01-2015 12:18 PM
[NMR paper] NMR-Based Detection of Hydrogen/Deuterium Exchange in Liposome-Embedded Membrane Proteins.
NMR-Based Detection of Hydrogen/Deuterium Exchange in Liposome-Embedded Membrane Proteins. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.plosone.org-images-pone_120x30.png Related Articles NMR-Based Detection of Hydrogen/Deuterium Exchange in Liposome-Embedded Membrane Proteins. PLoS One. 2014;9(11):e112374 Authors: Yao X, Dürr UH, Gattin Z, Laukat Y, Narayanan RL, Brückner AK, Meisinger C, Lange A, Becker S, Zweckstetter M Abstract Membrane proteins play key roles in biology. Determination of...
nmrlearner Journal club 0 11-08-2014 12:08 AM
Quantification of protein backbone hydrogen-deuterium exchange rates by solid state N
Quantification of protein backbone hydrogen-deuterium exchange rates by solid state NMR spectroscopy Abstract We present the quantification of backbone amide hydrogen-deuterium exchange rates (HDX) for immobilized proteins. The experiments make use of the deuterium isotope effect on the amide nitrogen chemical shift, as well as on proton dilution by deuteration. We find that backbone amides in the microcrystalline α-spectrin SH3 domain exchange rather slowly with the solvent (with exchange rates negligible within the individual 15Nâ??T 1 timescales). We observed chemical exchange for 6...
nmrlearner Journal club 0 10-27-2010 08:51 AM
Quantification of protein backbone hydrogen-deuterium exchange rates by solid state N
Quantification of protein backbone hydrogen-deuterium exchange rates by solid state NMR spectroscopy. Related Articles Quantification of protein backbone hydrogen-deuterium exchange rates by solid state NMR spectroscopy. J Biomol NMR. 2010 Oct 20; Authors: Del Amo JM, Fink U, Reif B We present the quantification of backbone amide hydrogen-deuterium exchange rates (HDX) for immobilized proteins. The experiments make use of the deuterium isotope effect on the amide nitrogen chemical shift, as well as on proton dilution by deuteration. We find that...
nmrlearner Journal club 0 10-22-2010 06:02 AM
A Transient and Low-Populated Protein-Folding Intermediate at Atomic Resolution - Sec
A Transient and Low-Populated Protein-Folding Intermediate at Atomic Resolution - Securities Industry News (blog) (subscription) <img alt="" height="1" width="1" /> A Transient and Low-Populated Protein-Folding Intermediate at Atomic Resolution Securities Industry News (blog) (subscription) In this work, we used chemical shifts and bond-vector orientation constraints obtained from nuclear magnetic resonance relaxation dispersion spectroscopy, ... Read More
nmrlearner Online News 0 09-10-2010 12:48 AM
[NMR paper] Mechanism of hydrogen-deuterium exchange in trp repressor studied by 1H-15N NMR.
Mechanism of hydrogen-deuterium exchange in trp repressor studied by 1H-15N NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Mechanism of hydrogen-deuterium exchange in trp repressor studied by 1H-15N NMR. J Mol Biol. 1995 Nov 3;253(4):576-89 Authors: Finucane MD, Jardetzky O Amide proton exchange rates have been measured for fast-exchanging amides in trp aporepressor, and compared with the rates measured in the holorepressor. The results indicate that the presence...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] Investigation of ribonuclease T1 folding intermediates by hydrogen-deuterium amide ex
Investigation of ribonuclease T1 folding intermediates by hydrogen-deuterium amide exchange-two-dimensional NMR spectroscopy. Related Articles Investigation of ribonuclease T1 folding intermediates by hydrogen-deuterium amide exchange-two-dimensional NMR spectroscopy. Biochemistry. 1993 Jun 22;32(24):6152-6 Authors: Mullins LS, Pace CN, Raushel FM The rate of hydrogen bond formation at individual amino acid residues in ribonuclease T1 (RNase T1) has been investigated by the hydrogen-deuterium exchange-2D NMR (HDEx-2D NMR) technique (Udgaonkar...
nmrlearner Journal club 0 08-21-2010 11:53 PM
[NMR paper] Real-time NMR studies on a transient folding intermediate of barstar.
Real-time NMR studies on a transient folding intermediate of barstar. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Real-time NMR studies on a transient folding intermediate of barstar. Protein Sci. 1999 Jun;8(6):1286-91 Authors: Killick TR, Freund SM, Fersht AR The refolding of barstar, the intracellular...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:16 PM.


Map