BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-20-2016, 09:20 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Fluorine-19 NMR and computational quantification of isoflurane binding to the voltage-gated sodium channel NaChBac.

Fluorine-19 NMR and computational quantification of isoflurane binding to the voltage-gated sodium channel NaChBac.

Related Articles Fluorine-19 NMR and computational quantification of isoflurane binding to the voltage-gated sodium channel NaChBac.

Proc Natl Acad Sci U S A. 2016 Nov 15;:

Authors: Kinde MN, Bondarenko V, Granata D, Bu W, Grasty KC, Loll PJ, Carnevale V, Klein ML, Eckenhoff RG, Tang P, Xu Y

Abstract
Voltage-gated sodium channels (NaV) play an important role in general anesthesia. Electrophysiology measurements suggest that volatile anesthetics such as isoflurane inhibit NaV by stabilizing the inactivated state or altering the inactivation kinetics. Recent computational studies suggested the existence of multiple isoflurane binding sites in NaV, but experimental binding data are lacking. Here we use site-directed placement of (19)F probes in NMR experiments to quantify isoflurane binding to the bacterial voltage-gated sodium channel NaChBac. (19)F probes were introduced individually to S129 and L150 near the S4-S5 linker, L179 and S208 at the extracellular surface, T189 in the ion selectivity filter, and all phenylalanine residues. Quantitative analyses of (19)F NMR saturation transfer difference (STD) spectroscopy showed a strong interaction of isoflurane with S129, T189, and S208; relatively weakly with L150; and almost undetectable with L179 and phenylalanine residues. An orientation preference was observed for isoflurane bound to T189 and S208, but not to S129 and L150. We conclude that isoflurane inhibits NaChBac by two distinct mechanisms: (i) as a channel blocker at the base of the selectivity filter, and (ii) as a modulator to restrict the pivot motion at the S4-S5 linker and at a critical hinge that controls the gating and inactivation motion of S6.


PMID: 27856739 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Conformational plasticity of the NNRTI-binding pocket in HIV-1 reverse transcriptase - A fluorine NMR study.
Conformational plasticity of the NNRTI-binding pocket in HIV-1 reverse transcriptase - A fluorine NMR study. Related Articles Conformational plasticity of the NNRTI-binding pocket in HIV-1 reverse transcriptase - A fluorine NMR study. Biochemistry. 2016 May 10; Authors: Sharaf NG, Ishima R, Gronenborn AM Abstract HIV-1 reverse transcriptase (RT) is a major drug target in the treatment of HIV-1 infection. RT inhibitors currently in use include non-nucleoside, allosteric RT inhibitors (NNRTIs), which bind to a hydrophobic pocket,...
nmrlearner Journal club 0 05-11-2016 08:04 PM
[NMR paper] Weak Intermolecular Hydrogen Bonds with Fluorine: Detection and Implications for Enzymatic/Chemical Reactions, Chemical Properties, and Ligand/Protein Fluorine NMR Screening.
Weak Intermolecular Hydrogen Bonds with Fluorine: Detection and Implications for Enzymatic/Chemical Reactions, Chemical Properties, and Ligand/Protein Fluorine NMR Screening. Related Articles Weak Intermolecular Hydrogen Bonds with Fluorine: Detection and Implications for Enzymatic/Chemical Reactions, Chemical Properties, and Ligand/Protein Fluorine NMR Screening. Chemistry. 2016 Apr 26; Authors: Dalvit C, Vulpetti A Abstract It is known that strong hydrogen-bonding interactions play an important role in many chemical and...
nmrlearner Journal club 0 04-27-2016 01:51 PM
[NMR paper] Comparative analysis the binding affinity of mycophenolic sodium and meprednisone with human serum albumin: insight by NMR relaxation data and docking simulation.
Comparative analysis the binding affinity of mycophenolic sodium and meprednisone with human serum albumin: insight by NMR relaxation data and docking simulation. Related Articles Comparative analysis the binding affinity of mycophenolic sodium and meprednisone with human serum albumin: insight by NMR relaxation data and docking simulation. Chem Biol Interact. 2016 Feb 15; Authors: Ma X, He J, Yan J, Wang Q, Li H Abstract Mycophenolic sodium is an immunosuppressive agent that is always combined administration with corticosteroid...
nmrlearner Journal club 0 02-20-2016 11:05 PM
[NMR paper] Dehydration of Ions in Voltage-Gated Carbon Nanopores Observed by in situ NMR.
Dehydration of Ions in Voltage-Gated Carbon Nanopores Observed by in situ NMR. Related Articles Dehydration of Ions in Voltage-Gated Carbon Nanopores Observed by in situ NMR. J Phys Chem Lett. 2015 Dec 2; Authors: Luo ZX, Xing YZ, Liu S, Ling YC, Kleinhammes A, Wu Y Abstract Ion transport through nanochannels is of fundamental importance in voltage-gated protein ion channels and energy storage devices. Direct microscopic observations are critical for understanding the intricacy of ionic processes in nanoconfinement. Here we...
nmrlearner Journal club 0 12-03-2015 07:37 PM
Affinity screening using competitive binding with fluorine-19 hyperpolarized ligands
From The DNP-NMR Blog: Affinity screening using competitive binding with fluorine-19 hyperpolarized ligands Kim, Y. and C. Hilty, Affinity screening using competitive binding with fluorine-19 hyperpolarized ligands. Angew Chem Int Ed Engl, 2015. 54(16): p. 4941-4. http://www.ncbi.nlm.nih.gov/pubmed/25703090
nmrlearner News from NMR blogs 0 10-08-2015 12:56 AM
NMR-Based Conformational Ensembles Explain pH-Gated Opening and Closing of OmpG Channel
NMR-Based Conformational Ensembles Explain pH-Gated Opening and Closing of OmpG Channel Tiandi Zhuang, Christina Chisholm, Min Chen and Lukas K. Tamm http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja408206e/aop/images/medium/ja-2013-08206e_0011.gif Journal of the American Chemical Society DOI: 10.1021/ja408206e http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/UcxM_KhEqyU
nmrlearner Journal club 0 10-01-2013 11:15 PM
[NMR paper] NMR-based Conformational Ensembles Explain pH-Gated Opening and Closing of OmpG Channel.
NMR-based Conformational Ensembles Explain pH-Gated Opening and Closing of OmpG Channel. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles NMR-based Conformational Ensembles Explain pH-Gated Opening and Closing of OmpG Channel. J Am Chem Soc. 2013 Sep 10; Authors: Zhuang T, Chisholm C, Chen M, Tamm LK Abstract The outer membrane protein G (OmpG) is a monomeric 33 kDa 14-stranded ?-barrel membrane protein functioning as a non-specific porin for the uptake of...
nmrlearner Journal club 0 09-12-2013 11:02 PM
Solution NMR Structure of apo-calmodulin in complex with the IQ motif of Human Cardiac Sodium Channel Na(V)1.5.
Solution NMR Structure of apo-calmodulin in complex with the IQ motif of Human Cardiac Sodium Channel Na(V)1.5. Solution NMR Structure of apo-calmodulin in complex with the IQ motif of Human Cardiac Sodium Channel Na(V)1.5. J Mol Biol. 2010 Dec 14; Authors: Chagot B, Chazin WJ The function of the human voltage-gated sodium channel Na(V)1.5 is regulated in part by intracellular calcium signals. The ubiquitous calcium sensor protein calmodulin (CaM) is an important part of the complex calcium-sensing apparatus in Na(V)1.5. CaM interacts with an IQ...
nmrlearner Journal club 0 12-21-2010 01:00 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:07 PM.


Map