First solid-state NMR analysis of uniformly (13)C-enriched major light-harvesting complexes from Chlamydomonas reinhardtti and identification of protein and cofactor spin clusters.
First solid-state NMR analysis of uniformly (13)C-enriched major light-harvesting complexes from Chlamydomonas reinhardtti and identification of protein and cofactor spin clusters.
First solid-state NMR analysis of uniformly (13)C-enriched major light-harvesting complexes from Chlamydomonas reinhardtti and identification of protein and cofactor spin clusters.
Biochim Biophys Acta. 2011 Jan 25;
Authors: Pandit A, Morosinotto T, Reus M, Holzwarth AR, Bassi R, de Groot HJ
The light-harvesting complex II (LHCII) is the main component of the antenna system of plants and green algae and plays a major role in the capture of sun light for photosynthesis. The LHCII complexes have also been proposed to play a key role in the optimization of photosynthetic efficiency through the process of state 1-state 2 transitions and are involved in down-regulation of photosynthesis under excess light by energy dissipation through non-photochemical quenching (NPQ). We present here the first solid-state magic-angle spinning (MAS) NMR data of the major light-harvesting complex (LHCII) of Chlamydomonas reinhardtii, a eukaryotic green alga. We are able to identify nuclear spin clusters of the protein and of its associated chlorophyll pigments in (13)C-(13)C dipolar homonuclear correlation spectra on a uniformly (13)C-labeled sample. In particular, we were able to resolve several chlorophyll 13(1) carbon resonances that are sensitive to hydrogen bonding to the 13(1)-keto carbonyl group. The data show that (13)C NMR signals of the pigments and protein sites are well resolved, thus paving the way to study possible structural reorganization processes involved in light-harvesting regulation through MAS solid-state NMR.
PMID: 21276419 [PubMed - as supplied by publisher]
Solid-state NMR applied to photosynthetic light-harvesting complexes.
Solid-state NMR applied to photosynthetic light-harvesting complexes.
Solid-state NMR applied to photosynthetic light-harvesting complexes.
Photosynth Res. 2011 Aug 13;
Authors: Pandit A, de Groot HJ
This short review describes how solid-state NMR has provided a mechanistic and electronic picture of pigment-protein and pigment-pigment interactions in photosynthetic antenna complexes. NMR results on purple bacterial antenna complexes show how the packing of the protein and the pigments inside the light-harvesting oligomers induces mutual...
nmrlearner
Journal club
0
08-16-2011 01:19 PM
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin [Biophysics and Computational Biology]
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin
Struts, A. V., Salgado, G. F. J., Brown, M. F....
Date: 2011-05-17
Rhodopsin is a canonical member of the family of G protein-coupled receptors, which transmit signals across cellular membranes and are linked to many drug interventions in humans. Here we show that solid-state 2H NMR relaxation allows investigation of light-induced changes in local ps–ns time scale motions of retinal bound to rhodopsin. Site-specific 2H labels were introduced into methyl groups of the...
nmrlearner
Journal club
0
05-17-2011 08:40 PM
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin.
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin.
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin.
Proc Natl Acad Sci U S A. 2011 Apr 28;
Authors: Struts AV, Salgado GF, Brown MF
Rhodopsin is a canonical member of the family of G protein-coupled receptors, which transmit signals across cellular membranes and are linked to many drug interventions in humans. Here we show that solid-state (2)H NMR relaxation...
nmrlearner
Journal club
0
04-30-2011 12:36 PM
[NMR paper] Biosynthetic site-specific (13) C labeling of the light-harvesting 2 protein complex:
Biosynthetic site-specific (13) C labeling of the light-harvesting 2 protein complex: a model for solid state NMR structure determination of transmembrane proteins.
Related Articles Biosynthetic site-specific (13) C labeling of the light-harvesting 2 protein complex: a model for solid state NMR structure determination of transmembrane proteins.
J Biomol NMR. 2004 Nov;30(3):267-74
Authors: van Gammeren AJ, Hulsbergen FB, Hollander JG, de Groot HJ
Partly biosynthetic site-directed isotopically (13)C enriched photosynthetic light-harvesting...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
[NMR paper] Partial NMR assignments for uniformly (13C, 15N)-enriched BPTI in the solid state.
Partial NMR assignments for uniformly (13C, 15N)-enriched BPTI in the solid state.
Related Articles Partial NMR assignments for uniformly (13C, 15N)-enriched BPTI in the solid state.
J Biomol NMR. 2000 Mar;16(3):209-19
Authors: McDermott A, Polenova T, Bockmann A, Zilm KW, Paulson EK, Martin RW, Montelione GT, Paulsen EK
We demonstrate that high-resolution multidimensional solid state NMR methods can be used to correlate many backbone and side chain chemical shifts for hydrated micro-crystalline U-13C,15N Basic Pancreatic Trypsin Inhibitor...
nmrlearner
Journal club
0
11-18-2010 09:15 PM
[NMR paper] Multidimensional triple resonance NMR spectroscopy of isotopically uniformly enriched
Multidimensional triple resonance NMR spectroscopy of isotopically uniformly enriched proteins: a powerful new strategy for structure determination.
Related Articles Multidimensional triple resonance NMR spectroscopy of isotopically uniformly enriched proteins: a powerful new strategy for structure determination.
Ciba Found Symp. 1991;161:108-19; discussion 119-35
Authors: Bax A, Ikura M, Kay LE, Barbato G, Spera S
A procedure is described that affords complete 1H, 13C and 15N resonance assignment in proteins of up to about 25 kDa. The new...
nmrlearner
Journal club
0
08-21-2010 11:16 PM
Solid-State (17)O NMR Spectroscopy of Large Protein-Ligand Complexes.
Solid-State (17)O NMR Spectroscopy of Large Protein-Ligand Complexes.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles Solid-State (17)O NMR Spectroscopy of Large Protein-Ligand Complexes.
Angew Chem Int Ed Engl. 2010 Jul 29;
Authors: Zhu J, Ye E, Terskikh V, Wu G
nmrlearner
Journal club
0
08-17-2010 03:36 AM
Solid-State (17)O NMR Spectroscopy of Large Protein-Ligand Complexes.
Solid-State (17)O NMR Spectroscopy of Large Protein-Ligand Complexes.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles Solid-State (17)O NMR Spectroscopy of Large Protein-Ligand Complexes.
Angew Chem Int Ed Engl. 2010 Jul 28;
Authors: Zhu J, Ye E, Terskikh V, Wu G