Fast NMR-Based Determination of the 3D Structure of the Binding Site of Protein-Ligand Complexes with Weak Affinity Binders.
Angew Chem Int Ed Engl. 2017 Apr 07;:
Authors: Wälti MA, Riek R, Orts J
Abstract
In early drug discovery approaches, screening hits are often weak affinity binders that are difficult to characterize in structural detail, particularly towards obtaining the 3D structure of protein-ligand complexes at atomic resolution. NMR is the outstanding technique to tackle such problems, yet suffers from a tedious structure calculation process. NMR(2) was recently developed to alleviate the laborious element of routine NMR structure calculation procedures and provides the structural information at protein-ligand interaction sites orders of magnitude faster than standard procedures. The NMR(2) method was extended to weak binders and applied to the oncoproteins HDM2 and MDMX. The structure of the MDMX-SJ212 complex is reported with a Kd of approximately 0.7 ?m; the complex structure of HDM2 with the mm affinity ligand #845 exhibits a new scaffold.
PMID: 28387455 [PubMed - as supplied by publisher]
Determination of ligand binding modes in weak proteinâ??ligand complexes using sparse NMR data
Determination of ligand binding modes in weak proteinâ??ligand complexes using sparse NMR data
Abstract
We describe a general approach to determine the binding pose of small molecules in weakly bound proteinâ??ligand complexes by deriving distance constraints between the ligand and methyl groups from all methyl-containing residues of the protein. We demonstrate that using a single sample, which can be prepared without the use of expensive precursors, it is possible to generate high-resolution data rapidly and obtain the resonance assignments of...
nmrlearner
Journal club
0
11-19-2016 08:35 PM
[NMR paper] NMR-based determination of the 3D structure of the ligand-protein interaction site without protein resonance assignment.
NMR-based determination of the 3D structure of the ligand-protein interaction site without protein resonance assignment.
NMR-based determination of the 3D structure of the ligand-protein interaction site without protein resonance assignment.
J Am Chem Soc. 2016 Mar 4;
Authors: Orts J, Wälti MA, Marsh M, Vera L, Gossert AD, Güntert P, Riek R
Abstract
Molecular replacement in X-ray crystallography is the prime method for establishing structure-activity relationships of pharmaceutically relevant molecules. Such an approach is not...
nmrlearner
Journal club
0
03-05-2016 11:21 AM
Advancing fragment binders to lead-like compounds using ligand and protein-based NMR spectroscopy.
Advancing fragment binders to lead-like compounds using ligand and protein-based NMR spectroscopy.
Advancing fragment binders to lead-like compounds using ligand and protein-based NMR spectroscopy.
Methods Enzymol. 2011;493:469-85
Authors: Maurer T
The application of NMR in fragment-based lead discovery (FBLD) has quickly developed from a sensitive method for the identification of low-affinity binders to an important tool in the hit-to-lead process. NMR can play a constructive role in the process from identifying those fragments with the best...
nmrlearner
Journal club
0
03-05-2011 01:02 PM
Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach.
Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach.
Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach.
Methods Enzymol. 2011;493:241-75
Authors: Ziarek JJ, Peterson FC, Lytle BL, Volkman BF
Over the last 15years, the role of NMR spectroscopy in the lead identification and optimization stages of pharmaceutical drug discovery has steadily increased. NMR occupies a unique niche in the biophysical analysis of drug-like...
nmrlearner
Journal club
0
03-05-2011 01:02 PM
Fast methionine-based solution structure determination of calcium-calmodulin complexes
Fast methionine-based solution structure determination of calcium-calmodulin complexes
Abstract Here we present a novel NMR method for the structure determination of calcium-calmodulin (Ca2+-CaM)-peptide complexes from a limited set of experimental restraints. A comparison of solved CaM-peptide structures reveals invariability in CaMâ??s backbone conformation and a structural plasticity in CaMâ??s domain orientation enabled by a flexible linker. Knowing this, the collection and analysis of an extensive set of NOESY spectra is redundant. Although RDCs can define CaM domain orientation in...
nmrlearner
Journal club
0
03-03-2011 02:06 AM
[NMR paper] Determination of protein-ligand binding affinity by NMR: observations from serum albu
Determination of protein-ligand binding affinity by NMR: observations from serum albumin model systems.
Related Articles Determination of protein-ligand binding affinity by NMR: observations from serum albumin model systems.
Magn Reson Chem. 2005 Jun;43(6):463-70
Authors: Fielding L, Rutherford S, Fletcher D
The usefulness of bovine serum albumin (BSA) as a model protein for testing NMR methods for the study of protein-ligand interactions is discussed. Isothermal titration calorimetry established the binding affinity and stoichiometry of the...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
PCS-based structure determination of proteinâ??protein complexes
Abstract A simple and fast nuclear magnetic resonance method for docking proteins using pseudo-contact shift (PCS) and 1HN/15N chemical shift perturbation is presented. PCS is induced by a paramagnetic lanthanide ion that is attached to a target protein using a lanthanide binding peptide tag anchored at two points. PCS provides long-range (~40 Ã?) distance and angular restraints between the lanthanide ion and the observed nuclei, while the 1HN/15N chemical shift perturbation data provide loose contact-surface information. The usefulness of this method was demonstrated through the structure...
nmrlearner
Journal club
0
08-14-2010 04:19 AM
Structure Determination of Protein-Ligand Complexes by Transferred Paramagnetic Shifts
Structure Determination of Protein-Ligand Complexes by Transferred Paramagnetic Shifts
Michael John, Guido Pintacuda, Ah Young Park, Nicholas E. Dixon, and Gottfried Otting
J. Am. Chem. Soc.; 2006; 128(39) pp 12910 - 12916; (Article)
Abstract:
Rational drug design depends on the knowledge of the three-dimensional (3D) structure of complexes between proteins and lead compounds of low molecular weight. A novel nuclear magnetic resonance (NMR) spectroscopy strategy based on the paramagnetic effects from lanthanide ions allows the rapid determination of the 3D structure of a small...