BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-25-2010, 08:21 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Fast multidimensional NMR: radial sampling of evolution space.

Fast multidimensional NMR: radial sampling of evolution space.

Related Articles Fast multidimensional NMR: radial sampling of evolution space.

J Magn Reson. 2005 Apr;173(2):317-21

Authors: Kupce E, Freeman R

Multidimensional NMR spectroscopy can be speeded up by limited radial sampling of the time-domain evolution data. The resulting frequency-domain projections are used to reconstruct the full NMR spectrum. New algorithms are proposed to suppress back-projection artifacts while retaining optimum sensitivity. The method is illustrated by experiments on the 900 MHz HNCO spectrum of a protein, HasA.

PMID: 15780924 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling
Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling Abstract The fast Fourier transformation has been the gold standard for transforming data from time to frequency domain in many spectroscopic methods, including NMR. While reliable, it has as a drawback that it requires a grid of uniformly sampled data points. This needs very long measuring times for sampling in multidimensional experiments in all indirect dimensions uniformly and even does not allow reaching optimal evolution times that would...
nmrlearner Journal club 0 02-16-2012 05:24 AM
Knowledge-based nonuniform sampling in multidimensional NMR
Knowledge-based nonuniform sampling in multidimensional NMR Abstract The full resolution afforded by high-field magnets is rarely realized in the indirect dimensions of multidimensional NMR experiments because of the time cost of uniformly sampling to long evolution times. Emerging methods utilizing nonuniform sampling (NUS) enable high resolution along indirect dimensions by sampling long evolution times without sampling at every multiple of the Nyquist sampling interval. While the earliest NUS approaches matched the decay of sampling density to the decay of the signal envelope, recent...
nmrlearner Journal club 0 06-06-2011 12:53 AM
[NMR paper] Signal identification in NMR spectra with coupled evolution periods.
Signal identification in NMR spectra with coupled evolution periods. Related Articles Signal identification in NMR spectra with coupled evolution periods. J Magn Reson. 2005 Sep;176(1):47-53 Authors: Malmodin D, Billeter M Novel multidimensional NMR experiments rely on modified time-domain sampling schemes to provide significant savings of experimental time. Several approaches are based on the coupling of evolution times resulting in a reduction of the dimensionality of the recorded spectra, and a concomitant saving of experimental time. We...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[Stan NMR blog] Is every finite-dimensional Hilbert space a spin-space?
Is every finite-dimensional Hilbert space a spin-space? Every linear operator on any finite Hilbert space can be generated from spin operators. More...
nmrlearner News from NMR blogs 0 08-21-2010 06:14 PM
Random sampling in multidimensional NMR spectroscopy
Random sampling in multidimensional NMR spectroscopy Publication year: 2010 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 3 August 2010</br> Krzysztof, Kazimierczuk , Jan, Stanek , Anna, Zawadzka-Kazimierczuk , Wiktor, Ko?mi?ski</br> More...
nmrlearner Journal club 0 08-16-2010 03:50 AM
Radial Sampling for Fast NMR: Concepts and Practices over Three Decades
Radial Sampling for Fast NMR: Concepts and Practices over Three Decades Publication year: 2010 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 30 July 2010</br> Brian E., Coggins , Ronald A., Venters , Pei, Zhou</br> *Accordion spectroscopy:*A method whereby one or more mixing times are incremented simultaneously with the chemical shift evolution time of an indirectly observed dimension.*Algebraic reconstruction technique (ART):*An algorithm for reconstruction of a function from its projections, which relies on the fact...
nmrlearner Journal club 0 08-16-2010 03:50 AM
How to process ZQ evolution in the indirect dimension
I want process ZQ evolution in the indirect dimension. In Professor Pervushin's paper(Proc. Natl. Acad. Sci. USA Vol. 96, pp. 9607–9612, August 1999). He has mentioned "After Fourier transformation in the w2 dimension, the complex interferogram is multiplied by exp, where wh is the offset in the w2 dimension relative to the 1H carrier frequency in rad/s." Can anyone tell me the detail.
rogeryao NMR Questions and Answers 0 08-16-2006 03:32 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:51 PM.


Map