Plant cell walls consist of a mixture of polysaccharides that render the cell wall a strong and dynamic material. Understanding the molecular structure and dynamics of wall polysaccharides is important for understanding and improving the properties of this energy-rich biomaterial. So far, solid-state NMR studies of cell wall structure and dynamics have solely relied on 13C chemical shifts measured from 2D and 3D correlation experiments. To increase the spectral resolution, sensitivity and upper limit of measurable distances, it is of interest to explore 1H chemical shifts and 1H-detected NMR experiments for analyzing cell walls. Here we demonstrate 2D and 3D 1Hâ??13C correlation experiments at both moderate and fast MAS frequencies of 10â??50Â*kHz to resolve and assign 1H chemical shifts of matrix polysaccharides in Arabidopsis primary cell walls. Both 13C-detected and 1H-detected experiments are implemented and are shown to provide useful and complementary information. Using the assigned 1H chemical shifts, we measured long-range correlations between matrix polysaccharides and cellulose using 1Hâ??1H instead of 13Câ??13C spin diffusion, and the 2D experiments can be conducted with either 13C or 1H detection.
Multidimensional solid-state NMR spectroscopy of plant cell walls #DNPNMR
From The DNP-NMR Blog:
Multidimensional solid-state NMR spectroscopy of plant cell walls #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Wang, T., P. Phyo, and M. Hong, Multidimensional solid-state NMR spectroscopy of plant cell walls. Solid State Nuclear Magnetic Resonance, 2016. 78: p. 56-63.
http://www.sciencedirect.com/science/article/pii/S0926204016300595
nmrlearner
News from NMR blogs
0
11-19-2016 08:35 PM
[NMR paper] Multidimensional solid-state NMR spectroscopy of plant cell walls.
Multidimensional solid-state NMR spectroscopy of plant cell walls.
Multidimensional solid-state NMR spectroscopy of plant cell walls.
Solid State Nucl Magn Reson. 2016 Aug 13;78:56-63
Authors: Wang T, Phyo P, Hong M
Abstract
Plant biomass has become an important source of bio-renewable energy in modern society. The molecular structure of plant cell walls is difficult to characterize by most atomic-resolution techniques due to the insoluble and disordered nature of the cell wall. Solid-state NMR (SSNMR) spectroscopy is uniquely...
nmrlearner
Journal club
0
08-24-2016 04:39 PM
[NMR paper] Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.
Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.
Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.
Biomacromolecules. 2016 May 18;
Authors: Wang T, Yang H, Kubicki JD, Hong M
Abstract
The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron...
nmrlearner
Journal club
0
05-19-2016 10:13 AM
Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls
From The DNP-NMR Blog:
Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls
Wang, T., et al., Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls. Proc Natl Acad Sci U S A, 2013. 110(41): p. 16444-9.
http://www.ncbi.nlm.nih.gov/pubmed/24065828
nmrlearner
News from NMR blogs
0
11-26-2013 01:19 AM
New technology helps researchers discover how plant cell walls grow - Iowa State Daily
<img alt="" height="1" width="1" />
New technology helps researchers discover how plant cell walls grow
Iowa State Daily
"We came upon the idea of using this new, enhanced method that she knew about, a sensitivity-enhanced method for nuclear magnetic resonance analysis, with some of our proteins that loosened cell walls," Cosgrove said. The focus of the experiment was ...
New technology helps researchers discover how plant cell walls grow - Iowa State Daily
More...
nmrlearner
Online News
0
10-08-2013 02:04 PM
[NMR paper] Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls.
Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls.
Related Articles Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls.
Proc Natl Acad Sci U S A. 2013 Sep 24;
Authors: Wang T, Park YB, Caporini MA, Rosay M, Zhong L, Cosgrove DJ, Hong M
Abstract
Structure determination of protein binding to noncrystalline macromolecular assemblies such as plant cell walls (CWs) poses a significant structural biology challenge. CWs are loosened during growth by expansin proteins,...
nmrlearner
Journal club
0
09-27-2013 03:28 AM
[NMR paper] Broadband homonuclear correlation spectroscopy driven by combined R2n(v) sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids.
Broadband homonuclear correlation spectroscopy driven by combined R2n(v) sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids.
Related Articles Broadband homonuclear correlation spectroscopy driven by combined R2n(v) sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids.
J Magn Reson. 2013 Apr 28;232C:18-30
Authors: Hou G, Yan S, Trébosc J, Amoureux JP, Polenova T
Abstract
We recently described a family of experiments for R2n(v) Driven Spin...
nmrlearner
Journal club
0
05-21-2013 02:34 PM
[NMR paper] Broadband Homonuclear Correlation Spectroscopy Driven by Combined R2nv Sequences under Fast Magic Angle Spinning for NMR Structural Analysis of Organic and Biological Solids
Broadband Homonuclear Correlation Spectroscopy Driven by Combined R2nv Sequences under Fast Magic Angle Spinning for NMR Structural Analysis of Organic and Biological Solids
Publication date: Available online 28 April 2013
Source:Journal of Magnetic Resonance</br>
Author(s): Guangjin Hou , Si Yan , Julien Trebosc , Jean-Paul Amoureux , Tatyana Polenova</br>
We recently described a family of experiments for R2 n v Driven Spin Diffusion (RDSD) spectroscopy suitable for homonuclear correlation experiments under fast MAS conditions (J. Am. Chem. Soc., 133, 2011,...