Fast Magic-Angle-Spinning 19F Spin Exchange NMR for Determining Nanometer 19F-19F Distances in Proteins and Pharmaceutical Compounds.
J Phys Chem B. 2018 Feb 27;:
Authors: Roos M, Wang T, Shcherbakov AA, Hong M
Abstract
Internuclear distances measured using NMR provide crucial constraints of three-dimensional structures, but are often restricted to about 5 Å due to the weakness of nuclear-spin dipolar couplings. For studying macromolecular assemblies in biology and materials science, distance constraints beyond 1 nm will be extremely valuable. Here we present an extensive and quantitative analysis of the feasibility of 19F spin exchange NMR for precise and robust measurements of inter-atomic distances to 1.6 nm at a magnetic field of 14.1 Tesla, under 20 - 40 kHz magic-angle spinning (MAS). The measured distances are comparable to those achievable from paramagnetic relaxation enhancement, but have higher precision, which is better than ±1 Å for short distances and ±2 Å for long distances. For 19F spins with the same isotropic chemical shift but different anisotropic chemical shifts, intermediate MAS frequencies of 15 - 25 kHz without 1H irradiation accelerate spin exchange. For spectrally resolved 19F-19F spin exchange, 1H-19F dipolar recoupling significantly speeds up 19F-19F spin exchange. Based on data from five fluorinated synthetic, pharmaceutical and biological compounds, we obtained two general curves for spin exchange between CF groups and between CF3 and CF groups. These curves allow 19F-19F distances to be extracted from the measured spin exchange rates after taking into account 19F chemical shifts. These results demonstrate the robustness of 19F spin exchange NMR for distance measurements in a wide range of biological and chemical systems.
PMID: 29486126 [PubMed - as supplied by publisher]
[NMR paper] Selective (1)H-(1)H Distance Restraints in Fully Protonated Proteins by Very Fast Magic-Angle Spinning Solid-State NMR.
Selective (1)H-(1)H Distance Restraints in Fully Protonated Proteins by Very Fast Magic-Angle Spinning Solid-State NMR.
Related Articles Selective (1)H-(1)H Distance Restraints in Fully Protonated Proteins by Very Fast Magic-Angle Spinning Solid-State NMR.
J Phys Chem Lett. 2017 May 11;:
Authors: Jain MG, Lalli D, Stanek J, GOwda CM, Prakash S, Schwarzer TS, Schubeis T, Castiglione K, Andreas LB, Madhu PK, Pintacuda G, Agarwal V
Abstract
Very fast magic-angle spinning (MAS>80 kHz) NMR spectroscopy combined with high field magnets...
nmrlearner
Journal club
0
05-12-2017 05:13 PM
Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins
Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins
Abstract
Heteronucleus-detected dipolar based correlation spectroscopy is established for assignments of 1H, 13C, and 15N resonances and structural analysis in fully protonated proteins. We demonstrate that 13C detected 3D experiments are highly efficient and permit assignments of the majority of backbone resonances, as shown in an 89-residue dynein light chain 8, LC8 protein. With these experiments, we...
nmrlearner
Journal club
0
11-11-2014 11:57 AM
[NMR paper] Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins.
Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins.
Related Articles Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins.
J Biomol NMR. 2014 Nov 9;
Authors: Guo C, Hou G, Lu X, O'Hare B, Struppe J, Polenova T
Abstract
Heteronucleus-detected dipolar based correlation spectroscopy is established for assignments of (1)H, (13)C, and (15)N...
nmrlearner
Journal club
0
11-10-2014 10:59 PM
Rapid Proton-DetectedNMR Assignment for Proteinswith Fast Magic Angle Spinning
Rapid Proton-DetectedNMR Assignment for Proteinswith Fast Magic Angle Spinning
Emeline Barbet-Massin, Andrew J. Pell, Joren S. Retel, Loren B. Andreas, Kristaps Jaudzems, W. Trent Franks, Andrew J. Nieuwkoop, Matthias Hiller, Victoria Higman, Paul Guerry, Andrea Bertarello, Michael J. Knight, Michele Felletti, Tanguy Le Marchand, Svetlana Kotelovica, Inara Akopjana, Kaspars Tars, Monica Stoppini, Vittorio Bellotti, Martino Bolognesi, Stefano Ricagno, James J. Chou, Robert G. Griffin, Hartmut Oschkinat, Anne Lesage, Lyndon Emsley, Torsten Herrmann and Guido Pintacuda
...
nmrlearner
Journal club
0
08-18-2014 10:14 PM
[NMR paper] Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.
Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.
Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.
J Am Chem Soc. 2014 Aug 7;
Authors: Barbet-Massin E, Pell AJ, Retel J, Andreas LB, Jaudzems K, Franks WT, Nieuwkoop AJ, Hiller M, Higman VA, Guerry P, Bertarello A, Knight MJ, Felletti M, Le Marchand T, Kotelovica S, Akopjana I, Tars K, Stoppini M, Bellotti V, Bolognesi M, Ricagno S, Chou JJ, Griffin RG, Oschkinat H, Lesage A, Emsley L, Herrmann T, Pintacuda G
Abstract
...
nmrlearner
Journal club
0
08-08-2014 01:45 PM
[NMR paper] High-resolution paramagnetically enhanced solid-state NMR spectroscopy of membrane proteins at fast magic angle spinning.
High-resolution paramagnetically enhanced solid-state NMR spectroscopy of membrane proteins at fast magic angle spinning.
Related Articles High-resolution paramagnetically enhanced solid-state NMR spectroscopy of membrane proteins at fast magic angle spinning.
J Biomol NMR. 2013 Dec 13;
Authors: Ward ME, Wang S, Krishnamurthy S, Hutchins H, Fey M, Brown LS, Ladizhansky V
Abstract
Magic angle spinning nuclear magnetic resonance (MAS NMR) is well suited for the study of membrane proteins in membrane mimetic and native membrane...
nmrlearner
Journal club
0
12-18-2013 04:00 PM
[NMR paper] Magic-Angle-Spinning NMR Techniques for Measuring Long-Range Distances in Biological Macromolecules.
Magic-Angle-Spinning NMR Techniques for Measuring Long-Range Distances in Biological Macromolecules.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Magic-Angle-Spinning NMR Techniques for Measuring Long-Range Distances in Biological Macromolecules.
Acc Chem Res. 2013 Feb 7;
Authors: Hong M, Schmidt-Rohr K
Abstract
The determination of molecular structures using solid-state NMR spectroscopy requires distance measurement through nuclear-spin dipole-dipole couplings....